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Describing and solving, in mathematical words, important and concrete applications. J

Many research fields have to treat with image processing:

@ in cultural heritage;

e pentimenti;

Caravaggio, John the Baptist (C. Daffara et al., 2011)
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Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications. J

Many research fields have to treat with image processing:

@ in cultural heritage;

e pentimenti;
e guide restoration;

Neidhart von Reuental (C.B. Schénlieb, 2009)
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Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications. J

Many research fields have to treat with image processing:

@ in cultural heritage;

e pentimenti;
e guide restoration;
e thermography:

Detachments from wall (C. Daffara et al., 2010)
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Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications. J

Many research fields have to treat with image processing:

@ in cultural heritage;

@ in medical imaging:

VAMPIRE project (A. Giachetti et al., 2013)
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Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications. J

Many research fields have to treat with image processing:

@ in cultural heritage;
@ in medical imaging:

@ in film restoration;

A. Buadés, S. Masnou et al. (2010)
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Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications. J

Many research fields have to treat with image processing:

@ in cultural heritage;
@ in medical imaging:
@ in film restoration;

@ in image denoaising.

A. Chambolle, T. Pock (2010)

Simone Parisotto (vr356435) March 13th, 2014 2/25



Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications. J

Many research fields have to treat with image processing:

@ in cultural heritage;
@ in medical imaging:
@ in film restoration;

@ in image denoaising.

In some of these projects | am still involved for further researches. J
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Motivation of our work

Plan of our work

This work aims to:

@ Study relevant image processing tasks by
variational and PDE methods:

o to model inpainting:;
o to model shadow removal;

@ See connection between the 2 problems;

@ Show how to speed up the computational
time for solving shadow removal;

Mathematical framework:

L 4 Ny

@ Geometric Measure Theory;
@ Functions of Bounded Variation;

@ Sefts of Finite Perimeters;

@ Drift-Diffusion equation;
Shadow Removal - Finlayson et al. (2006)
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Basics on BV functions

Basics on BV functions

Key idea: to describe images by gray level lines (all geometric information lie on edges) J

@ suitable setting: BV functions (natural for describing boundary discontinuities);

Distributional definition of BV function

Let u:e Q c R" - R. Then u € BV(RQ) if Du is a vector Radon measure, i.e.

(Du,gz):-fﬂudiv@:fﬂadou V3 e [C(Q)]”

@ Du is only concentrated on the boundaries;
@ Du = -7|Dul, with |v| = 1 and |Dul-a.e.

Total variation of u

0ul(2) =sup{ [ uan g, 4= <1, e ()}

@ dedling with BV functions — Sets of Finite Perimeters;
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Basics on BV functions

Sets of Finite Perimeters

A'is of Finite Perimeter in € if and only if x4 € BV(Q): P(A; Q) = |Dxal(2).

@ Dy encodes all geometric information on JA N Q;
@ O*A (reduced boundary) is H"'-rectifiable;

® Dy =vgeaH™ ' LO*Aso it is concentrated only
on the boundaries;

® Gauss-Green: [, divp = [y, 0 -vdH"";

@ measure-theoretic notion of tangent space;

Coarea Formula

Let u: R"” — R a Lipschitz function, A c R" open.

f|Vu|:/P({u>f};A)dT as elements of [0, oo].
A R

The total variation of a function is the accumulated surfaces of all its level sets.
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Functions of Bounded Variation
Functions of Bounded Variation

@ C. Jordan (1881): functions with control on the oscillations (Fourier series);

@ M. Miranda (1964): V(u,Q2) = sup{fQ udivipdx: e [CL)], [lo(x) e < 1}

The BV(R2) space is a Banach space with the norm [ulsy(q) = [qlul dx + [Du|(2). J

@ lower semicontinuity: V(u, Q) < liminfy_ o V(un, Q):
@ Convexity: V(tuy + (1= 1), Q) < tV(u, Q) + (1 - 1) V(wp, Q):
0 ue [BV(Q)]" <= V(u,Q) < oo;

Theorem (Federer-Vol'pert)

Let u € [BV(2)]™. The discontinuity set is " '-rectifiable and H"' (S, \ J,) = 0. Then

Du =V u(x)dx+ (uy (x) —u_(x)) @ vy (x) dH" ' LU, +D'uL (2N S,).
—
D Du Dcu

o V(u,Q)=|bul(Q), Yue [BV(Q)]™

Simone Parisotto (vr356435) March 13th, 2014 6/25



Functions of Bounded Variation

Functions of Special Bounded Variation

@ introduced by E. De Giorgi, L. Ambrosio (1988);
@ good candidate where both volume and surface energies are involved;

@ relevant for images;

SBYV space

Let u e BV(Q), then u € SBV(Q) if D°u = O

Du=D%+Du=vul"+ (u" —u )vH" Ly, YueSBV(Q).

Ww"(Q) c SBV(Q) c BV(Q). J

@ ifueW"'(Q),orue C'(Q), then Du = D°u;
@ if u=ya and |A| < oo, then Du = D'u (not Sobolev because Du = v, H™' L 9* A);
@ if uis the Cantor-Vitali function, then Du = D°u;
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Motivational Example

Motivational Example

We are involved in several cutting and pasting domains. Let u, v € [BV(£2)]™.
@ Isw =uxa+Vvxaw€ [BV(Q)]"?

@ Can Dw be expressed?

Let u,v € [BV(Q)]™. A c Q a set of finite perimeter with 0* A N Q oriented by 4. Let
U}« a» Ve 4 (interior and exterior trace of u and v) given for H"'-a.e. x € 9*An . Then

w = uxa+ vxawa € [BV(Q)]" — ./;*Amﬂlug*A ~Vgeal dH™ < o0,

Dw =Du LA + (Ufp = Vien) ®UaH™ L(0*ANQ) + Dv LA

Let u,v e W"'(2) nL>(Q), A c Q be a set of finite perimeter. Then

W = uxa + VXaua € SBV(Q),
Dw = [V uxa+V VXQ\A]E” + (T-V)aH L(QNI*A).
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The inpainting problem

The inpainting problem

very common in film restoration and image retouching;

digital inpainting: retouching or recovering damaged ancient paintings (2001);
we don’t want to recover the true missing patch;

we aim to create a new natfural one;

interpolation problem with unknown regularity degree (we are in BV space);

geometric, sparse or exemplar-based approaches.

e NEENI
-

Original Inpainting domain Bornemann (2007)
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The inpainting problem Geometric approach: The Euler’s Elastica

Geometric approach: The Euler’s Elastica

image smoothness is expressed by total variatfion or curvature of level lines;
the boundary data are propagated to predict the missing geometric structure;
local method based on PDE but fails in presence of texture;

[" Euler’s elastica if it is the equilibrium curve of the elasticity energy (1744):

E[vy] = /;(a+ bk?) ds,

from C.0.V., we obtain a fourth order equation: 2" (s) + k°(s) = £k (s);

N\ P
<7, / fitz\"l.
“u (us )~
\ \ ius/
Occlusion Possible connection Situation Approximation
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The inpainting problem Geometric approach: The Euler’s Elastica

@ along any isophote vy : u = A, the curvature of the oriented curve is given by
Vu [ Vu
kK=V-n=V- =div| —— | = H = k1 + K> (mean curvature);
[Vl [V ul

@ dtis the length element along fso A/t = |V u| or dA = |V u| dt;

J[u]zE[]-"]=/1f%u )\(a+bf£2)dsd)\
f [MA c:+b VS |) )|Vu|dfds

/D(a+b(v |§—|) )|Vu|dx with u € BV(Q).

@ suitable boundary conditions;

@ if a/b =00, then TV(u) = [,|V u|, with the condition u|a.p = Uo|a-p-

Theorem: The noise free TV inpainting model (Chan, Shen)

Suppose that uy € BV(Q2), up ¢ [0, 1]. Then the noise free TV inpainting model TV (u).,
together with the gray value constraint u c [0, 1], has one optimal inpainting at least.
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The inpainting problem Sparse approach based on (consistent) dictionaries

Sparse approach based on (consistent) dictionaries
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The inpainting problem Sparse approach based on (consistent) dictionaries

Sparse approach based on (consistent) dictionaries

Hays - Efros
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The inpainting problem Exemplar-based approach: Variational Framework

Exemplar-based approach: Variational Framework

@ patches similarity within the image: correspondence maps ¢ : O — OF;
@ the whole image is scanned (greedy algorithm but sensitive to the order);

@ Demanet (2003): variational formulation searching u(x) = T(p(x)), for x € O:
E(p) = f fQ [G((x + 1)) ~T(p(x) + MEdhdx  (hon-convex);
o P

@ Gilboa, Osher (2007): replace ¢ with weights w(x, y)., subject to [z, w(x,y) = 1;

Arias, Caselles, Facciolo (2011)

min [ [ wix,v)e (eu(0) —pan)ayax+T [ [ wix y)ioa(w(x,y)) dyax

@ when T — 0 the weights are the corespondence map: w(x,X) = §(X - ©(x)).
® NLMeans: P = L*(Qp). e(pu(x) = pa(y)) = Ipu(x) = pa(y) .

@ NL Poisson: P = W'?(Qp). e(pu(x) = pa(y)) = [pu(x) = pa(¥) % o

@ NL Gradient Medians: P = BV(£2,,). e(py(x) — pa(y)) = [pu(x) = pa(y)|v,e-

Simone Parisotto (vr356435) March 13th, 2014 13/256



The inpainting problem Exemplar-based approach: Variational Framework
Foo% Iy B 74 g g =T v 3 R 74
& ¢ » i i S
-y X : \ ] 5 ) . £ .
|

@ solution’s structure: rototranslation of patches;

NL-Poisson patch metric function

Ey.r(u,w) = /6/60 w(x, y)||;:vu(x)—pg|\§,7v dy dx + T]% f5¢ w(x,y)logw(x,y)dy,

Euler-Lagrange equations respect w and u  * Osmosis
1 1

wer(u)(x,y) = —————exp|—=¢ X) — ,

1(@)09) = 5o o0 (~7(eul) ~pat))

Au(z) =divv(w)(z), z€O, . 5
{u=a, e, = L9 u@ -v(w) @)z dz.
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The inpainting problem Exemplar-based approach: Variational Framework

Existence of minima for NL-Means and NL-Poisson

Existence of minima for NL-Means approach - Arias et al. (2011)

Assume g € C.(R")*, suppg € Q,. VgeL'(R") and T e BV(O°) nL*®(O°).

o If ( Up, wn) € A, is a minimizing sequence for EZJ such that uj, is uniformly
bounded, then we may exiract a subsequence converging to a minimum of 52’7'.

@ There exist a minimum (u, w) € A, of & 7. For any minimum (u, w) € A, we have
that u e W"*(0) and w € W"> (O x O°).

v

Existence of minima for NL-Poisson approach - Arias et al. (2011)

Assume T € W22(0°) nL>®(0°), g e W (R")*, supp g € 2, compact.

@ There exists a solufion of the variational problem miny,wyec 4y EV,T(u, w).

@ For any solution (u, w) € Ay we have u € W'2(0) nW2P(0) n L (O) for all
pe[l,00] and w e W"*(O x O°).
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The inpainting problem Exemplar-based approach: Variational Framework

Algorithms and Visual Results - Arias, Caselles, Facciolo (2011)

Some numerical details:
@ Patchmatch (2009) for patch comparison: faster than kd-tree:

@ because of high probability to fall in local minima: multiscale approach;

Alternating optimization for NL-means model Alternating optimization for NL-Poisson model
Input: L° with [|t° ] eo < [T][co- Input: L° with ||°]|ce < [[T]|co-
1: foreach k € N do 1: foreach k €e N do
20w = argmingepy E2,1(UK, w), 20w = argming,ep Ev 1 (UK, w),
3 J = argming E,7(u, wET). 8 d = argmingey 2y, e =aly0e EV.T(U WK,
4: end for 4: end for

Original KSY NL-Means NL-Poisson
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Drift Diffusion PDE

Drift Diffusion PDE - Weickert (2013)

@ Osmosis: omnipresent in nature (it transports water across membranes);
@ diffusion (symmetric processes) leads to flat steady states;
@ osmosis (nonsymmetric counterpart of diffusion) allows nonconstant steady states;

@ asystem is in a steady state for a property p if Oyp = 0.

@ Fokker-Plank equation (time evolution of the p.d.f. of the velocity of a particle)

The continuous model o preservation of the Average Grey Value;
Jdu
i Au-div(du), onQx(0,T] e preservation of Positivity;
u(x,0) = f(x), on e convergence to Nontrivial Steady State
(Vu-du,n) =0, on 982 x (0,T] whend = Vlogv:

Associated minimization problem * NL-Poisson

2
dx, or min fQ|Vu—du|2 dx

min[ﬂv v(s)
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Drift Diffusion PDE

Drift Diffusion PDE - Weickert (2013)

@ Osmosis: omnipresent in nature (it transports water across membranes);

@ diffusion (symmetric processes) leads to flat steady states;

@ osmosis (nonsymmetric counterpart of diffusion) allows nonconstant steady states;
@ asystem is in a steady state for a property p if Oyp = 0.

@ Fokker-Plank equation (time evolution of the p.d.f. of the velocity of a particle)

The discrete model

uyy 1 ly . 1 N a1y
= === Uy + | = U1,
or \m 2n )JTVTA\RT on )V

@ suppose to know shadow boundaries for applications we have in mind;
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Oiu = Au - div(du) = 9u = Pu (only P needed) J

@ Exponential Integrators;
y'(t) = Ay(t) + b(t,y(1)), t>1
y(%o) = Yo,

whose analytical solution is, with ¢1(z) = (e? = 1)/z

y(1) = exp((t— 1) A)yo + fffexp((f - 7)A)b(7,y(7)) dr,

0

y(t) = exp((t = t)A)yo + (t = fo) 1 ((t = o) A)b = yo + (+ = o) 1 (1 — 1) A) (Ayo + b);

@ no need to compute exp(P) but exp(P)u (Krylov methods for P big and sparse)

A= VpHn VI = exp(A) Vi, & Viexp(Hy,) == exp(A)v ~ V,, exp(Hnm)er
@ Euler exponential method is exact if b(y(t)) = b(yo) = b or of order 1 otherwise.
@ scripts from Al-Mohy and Higham(2011) and Sidje(1998) have been tested;
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Owu=Au-dv(du) = J"*" = (1-dtoP) ' (1+dt(1 - 0)P)' J

@ Exponential Integrators;

@ #-method with direct method: LUpq factorization

[L,U,p,ql=lu(I-dt+thetaxA,’vector’);
B = (I+dtx(l-theta)=*A);

for t = (dt:dt:T)

C = Bxy;

y(a) = U\(L\ (noto(p)));
end
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Ou=Au-div(du) = ™' = (1-dtoP)~' (I +dt(1-6)P)d J

@ Exponential Integrators;

@ #-method with direct method: LUpq factorization

10° 10°
e .
- . g .
. -git-e - o
10f 0= L _ o
s
o o
10" o “er
107 o
10” 10
107
o
107
10 10 10" 10° 0’ 10 10 10” 10’ 10’
LUpqg. 8 =0.5 LUpqg. 6 =1
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Owu=Au-dv(du) = J"*" = (1-dtoP) ' (1+dt(1 - 0)P)' J

@ Exponential Integrators;
@ #-method with direct method: LUpq factorization;

@ O-method with iterative method: BICGStab and variants;

Simone Parisotto (vr356435) March 13th, 2014 20/25



Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Ou=Au-div(du) = ™' = (1-dtoP)~' (I +dt(1-6)P)d ]

@ Exponential Integrators;
@ #-method with direct method: LUpq factorization;
@ f-method with iterative method: BICGStab and variants;
o BiCGStab: standard, fixed timestep dt until T fixed is reached;
y=bicgstab (I-dt+thetaxA, (I+dt* (1-theta) *A) xy,tol, maxit);

y=bicgstab (I-dt*theta*A, (I+dt« (1-theta) *A) »y, tol,maxit, [], []1,V);
y=bicgstab (I-dtxthetaxA, (I+dt«* (1l-theta) *A) xy,tol,maxit,L,U,vy);

It is not satisfactory at all (first steps are the most important ones - far away from steady state). J
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Ou=Au-dv(du) = J™*' = (I-dtdP)”' (I +dt(1 - 0)P)d J

@ Exponential Integrators;
@ f-method with direct method: LUpq factorization;
@ f-method with iterative method: BICGStab and variants;

o BiCGStab: standard, fixed timestep dt until T fixed is reached;
o A-BICGStab: adaptative, variable timestep dt until T fixed is reached;

o

% k = number of iterations in BiCGStab

averit = 35xmaxit/50;

safe_zone = [0.8xaverit,1l.2*averit];
1.2xdt (t) 1if k<min(safe_zone) steps

dt (t+1) = 1.0+dt (t) 1if min(safe_zone)<k<max (safe_zone) steps
0.8xdt (t) 1if k>max(safe_zone) steps
0.5xdt (t) otherwise (don’t increase t).
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Owu=Au-dv(du) = J"*" = (1-dtoP)'(1+dt(1 - 0)P)' J

@ Exponential Integrators;
@ f#-method with direct method: LUpq factorization;

@ @-method with iterative method: BICGStab and variants;

o BiCGStab: standard, fixed timestep dt until T fixed is reached;
o A-BiICGStab: adaptative, variable timestep dt until T fixed is reached;

A-BICGStab: norm (y) A-BICGStab: Iters A-BiCGStab: dt
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Owu=Au-dv(du) = J"*" = (1-dtoP)'(1+dt(1 - 0)P)' J

@ Exponential Integrators;
@ f#-method with direct method: LUpq factorization;

@ @-method with iterative method: BICGStab and variants;

o BiCGStab: standard, fixed timestep dt until T fixed is reached;
o A-BiICGStab: adaptative, variable timestep dt until T fixed is reached;

A-BICGStab+ilu: norm (y) A-BICGStab+ilu: Iters A-BICGStab+ilu: dt
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Ou=Au-div(du) = ™' = (1-dtoP)~' (I +dt(1-6)P)d ]

@ Exponential Integrators;
@ #-method with direct method: LUpq factorization;
@ f-method with iterative method: BICGStab and variants;

o BiCGStab: standard, fixed timestep dt until T fixed is reached;
o A-BICGStab: adaptative, variable timestep dt until T fixed is reached;
o F-BICGStab: standard, fixed timestep dt until exit condition is true;

norm(y_new-y) /norm(y_new) < dt x tol_exit;
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Ou=Au-div(du) = ™' = (1-dtoP)~' (I +dt(1-6)P)d ]

@ Exponential Integrators;
@ #-method with direct method: LUpq factorization;
@ f-method with iterative method: BICGStab and variants;

o BiCGStab: standard, fixed timestep dt until T fixed is reached;

o A-BICGStab: adaptative, variable timestep dt until T fixed is reached;

o F-BiICGStab: standard, fixed timestep dt until exit condition is true;

o FA-BICGStab: adaptative, variable timestep dt until exit condition is true;

norm(y_new-y) /norm(y_new) < dt(t) * tol_exit;
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Jt = (1-dtoP) ' (1 + dt(1 - 9)P)u’; J

@ Exponential Integrators;

@ #-method with direct method: LUpq factorization;

@ f-method with iterative method: BICGStab and variants;
@ semi-Fourier collocation, full-Fourier collocation;

e mirror the image to guess the periodic boundary condition;

o large fimestep: error from reference is upper bounded by Gibbs
phenomenon on high jumps of colours;

o d can be modified when/where necessary (e.g. d = d. * Umgs):
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Jt = (1= dtoP) ' (1 + dt(1 - 9)P)u’; J

Exponential Integrators;
0-method with direct method: LUpq factorization;
0-method with iterative method: BICGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

(I-dth A - dt,D)u™" = (1+dt(1-60,)A +dt(1 - 6,)D)u’; J

Algorithm 1: Semi-impilicit solver with bridge Fourier collocation

Input: ° (original image, 2D matrix of N rows and M columns), k pixel-indexes.
Output: U’ at time T = o9,

: coeff = (1 + 4km2dt);

: A= (I+dtD);

s fort=dt:dt:Tdo

u = reshape(Au(:), N, M); ¥ = fft2(u)./coeff;

u = ifft2(¥);

: end for

CUORNWON =
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Jt = (1= dtoP) ' (1 + dt(1 - 9)P)u’; J

Exponential Integrators;
0-method with direct method: LUpq factorization;
0-method with iterative method: BICGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

u™ = (1-dtA) ' (1 + dtD)u'; J

Algorithm 1: Semi-impilicit solver with bridge Fourier collocation

Input: ° (original image, 2D matrix of N rows and M columns), k pixel-indexes.
Output: U’ at time T = o9,

: coeff = (1 + 4km2dt);

: A= (I+dtD);

s fort=dt:dt:Tdo

u = reshape(Au(:), N, M); ¥ = fft2(u)./coeff;

u = ifft2(¥);

: end for

CUORNWON =
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Drift Diffusion PDE Solving the Dirift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

Jt = (1= dtoP) ' (1 + dt(1 - 9)P)u'; J

Exponential Integrators;
f-method with direct method: LUpq factorization;

0-method with iterative method: BICGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

_ 2iTx-k _ 21,12 J2iTx kK,
U= Yk < U and  Au ==X oy Ul |k[Pe?™; J

Algorithm 1: Semi-implicit solver with bridge Fourier collocation

Input: I (original image, 2D matrix of N rows and M columns), k pixel-indexes.
Output: U’ at time T = o9,

i coeff = (1 + 4km2dt);

t A= (I+dtD);

:fort=dt:dt: Tdo

u = reshape(Au(:), N, M); ¥ = fft2(u)./coeff;

u = iff2(¥);

. end for

CUNWLN =
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Exponential Integrators;
f-method with direct method: LUpq factorization;

0-method with iterative method: BICGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

Ykl s V€™ =y = (|- dtA)u = Tioosn (1+ dtar?|k]?) ue* ™k, J

Algorithm 1: Semi-implicit solver with bridge Fourier collocation

Input: I (original image, 2D matrix of N rows and M columns), k pixel-indexes.
Output: U’ at time T = o9,

i coeff = (1 + 4km2dt);

t A= (I+dtD);

:fort=dt:dt: Tdo

u = reshape(Au(:), N, M); ¥ = fft2(u)./coeff;

u = iff2(¥);

. end for
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Solving the Drift-Diffusion PDE for Shadow Removal

Jt = (1= dtoP) ' (1 + dt(1 - 9)P)u'; J

Exponential Integrators;
f-method with direct method: LUpq factorization;

0-method with iterative method: BICGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

Ug = ks
k = (+atar?[k?) " J

Algorithm 1: Semi-implicit solver with bridge Fourier collocation

Input: ° (original image, 2D matrix of N rows and M columns), k pixel-indexes.
Output: U’ at time T = o9,

: coeff = (1 + 4km2dt);

. A= (I+dtD);

cfort=dt:dt:Tdo

u = reshape(Au(:), N, M); ¥ = fft2(u)./coeff;

u = ifft2(¥);

: end for

CUORNWON =
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Solving the Drift-Diffusion PDE for Shadow Removal

Owu=Au-dv(du) = u™' - dtAU™" = ¢ - dtdiv((Viogu) u'):

@ Exponential Integrators;

@ #-method with direct method: LUpq factorization;

@ fO-method with iterative method: BICGStab and variants;
°

semi-Fourier collocation, full-Fourier collocation;

Algorithm 2: Semi-implicit solver with fully Fourier collocation

1
2
3
4
5
6:
7
8
9
10

Input: Ty (original image, 2D matrix of N rows and M columns), k pixel-indexes.
Output: U’ at time T = o9,

: define the flag_log = {0, 1} variable, useful to change the computation of d.
tif flag_logthen

d = Viogu = iff2(fft2(log u) .. * (27ik))

. else

d = Vu./u= (ifff2(fft2(u). * (27ik)))./u;
end if

: coeff = (1 - 4kr2dt);
cfort=dt:dt:Tdo

div(du) = ifff2( (ff2(du). * (2mik))); u = iffi2(fft2(u — dtdiv(du))./coeff)

: end for
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Numerical Results

Parameters: dt = 1 (*for Fourier (F), dt = 100), tol_bicgstab=10_°°, tol_exit=10_oé and maxit = 30.

6=0.5 LUpq BiCGStab BiCGStab + ilu
- A F FA - A F FA
T 1000 1000 1000 5963 7177.26 1000 1000 6933 7579.16
I - 2968.5 1359 15394 4082 1585 516 9979.5 1485
R - 0 0 0 4 0 0 0 2
E 1.47e-08 1.68e-04 1.19e-03 - - 1.03e-04 1.21e-03 - -
C 86.80 138.12 24.43 804.32 73.34 192.73 19.37 1308.37 51.36
6=1 LUpq BiCGStab BiCGStab + ilu
- A F FA - A F FA
T 1000 1000 1000 5618 7798.39 1000 1000 6935 7856.53
I - 3306.5 1717 15897.5 4529.5 1785 753 10180.5 2298.5
R - 0 1 0 13 0 0 0 2
E 4.59e-05 1.47e-04 4.53e-03 - - 2.04e-04 3.94e-03 - -
C 84.27 125.36 30.04 679.08 83.84 181.92 25.63 1203.16 75.19
Ref. expmv LUpq BiCGStab BICGStab + ilu expv F. Alg. 1 F.Alg. 2
T 1000 1000 1000 1000 1000 1000* 1000*
0 - 1 0.5 0.5 - - -
I - - 1359 516 - - -
R - - 0 0 - - -
E - 4.59¢-05 1.19¢-03 1.21e-03 1.73e-04 0.1275 0.1080
C 206.26 84.27 24.43 19.37 25.07 4.80 10.94
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Numerical Results

Parameters: dt = 1 (*for Fourier (F), dt = 100), tol_bicgstab=10_07, tol_exit=10_07 and maxit = 30.

6=0.5 LUpq BiCGStab BiCGStab + ilu
- A F FA - A F
T 1000 1000 1000 16619 23061.54 1000 1000 20430 24228.54
I - 3398.5 1872 38248 11660 3066 680.5 278375
R - 0 4 o] 24 0 0 0
E 1.47e-08 2.24e-05 4.09e-03 - - 9.58e-06 1.20e-03 -
Cc 86.80 147.61 352 1996 2156.72 233.46 24.33 3428.48 130.35
0=1 LUpq BiCGStab BICGStab + ilu
- A F FA - A F
T 1000 1000 1000 15358 22299.95 1000 1000 20433 21338.26
I - 4032.5 2407.5 39377.5 10806 33325 1036 31189 5774.5
R . 0 4 0 47 0 0 0
E 4.59¢-05 6.59¢-05 4.80e-03 - - 7.21e-05 3.22e-03 - -
C 84.27 137.13 43.44 174814 209.73 225.12 3425 3240.42 187.02
Ref. expmv LUpq BiCGStab BiCGStab + ilu expv F. Alg. 1 F. Alg. 2
T 1000 1000 1000 1000 1000 1000* 1000*
0 - 1 0.5 0.5 - - -
I - - 1872 680.5 - -
R - - 4 0 - - -
E - 4.59¢-05 4.09e-03 1.20e-03 1.73e-04 0.1275 0.1080
C 206.26 84.27 352 24.33 25.07 4.80 10.94
Simone Parisotto (vr356435) 3th, 2014 22/25
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LUpqg., 0 =1 A-BICGStab +ilu, § = 0.5
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Drift Diffusion PDE Numerical Results

Ml

Input Reference with expmv . m

Error Alg. 2 with d = V u/u
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Drift Diffusion PDE Numerical Results

Reference with expmv . m

Vs
i

Fourier Alg. 2 with d = Vlog u Error Alg. 2 withd = Viogu

Simone Parisotto (vr356435)

3th, 2014 23 /25



Drift Diffusion PDE Numerical Results

F-BiCGStab, # = 0.5 F-BICGStab +ilu, § = 0.5
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FA-BICGStab, 6 = 0.5 FA-BICGStab +ilu, # = 0.5
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Other application: seamless image cloning
@ fuse incompatible information - Poisson Image Editing, Perez (2003);
@ interpolant f, of f; over [ is the solution of
(Euler - Lagrange) Af, =0, on I, with f, = f;, on O = blurred;
@ guidance vector field p:

(Euler - Lagrange) Af, =divp, on [, withfhb =f;, on I = p=Vb;

Euler Lagrange Notation Input
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Other application: seamless image cloning
@ fuse incompatible information - Poisson Image Editing, Perez (2003);
@ interpolant f, of f; over [ is the solution of
(Euler - Lagrange) Af, =0, on I, with f, = f;, on O = blurred;
@ guidance vector field p:

(Euler - Lagrange) Af, =divp, on [, withfhb =f;, on I = p=Vb;

Lagrange Pérez (2003) Osmosis: mean on O’
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Conclusions and Future Works

Conclusions and Future Works

Fourier is the fastest way tested despite of a visually negligible Gibbs phenomenon;
FA-BICGStab or Exponential Integrators are alternative approaches;

connection between NL-Poisson inpainting and shadow removal problems;

better control on stopping criterion for BICGStab;

to model non-constant shadow areas: variational model to inpaint the light?

simple old equations are still useful to model new computer vision problems;
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Conclusions and Future Works

Thank you for your attention.
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