
Variational Methods in Image Processing

for Inpainting and Shadow Removal

Simone Parisotto

University of Verona

Department of Computer Science

March 13th, 2014

Simone Parisotto (vr356435) March 13th, 2014 1 / 25

Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications.

Simone Parisotto (vr356435) March 13th, 2014 2 / 25

Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications.

Many research fields have to treat with image processing:

in cultural heritage;

pentimenti;

Caravaggio, John the Baptist (C. Daffara et al., 2011)

Simone Parisotto (vr356435) March 13th, 2014 2 / 25

Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications.

Many research fields have to treat with image processing:

in cultural heritage;

pentimenti;

guide restoration;

Neidhart von Reuental (C.B. Schönlieb, 2009)

Simone Parisotto (vr356435) March 13th, 2014 2 / 25

Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications.

Many research fields have to treat with image processing:

in cultural heritage;

pentimenti;

guide restoration;

thermography;

Detachments from wall (C. Daffara et al., 2010)

Simone Parisotto (vr356435) March 13th, 2014 2 / 25

Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications.

Many research fields have to treat with image processing:

in cultural heritage;

in medical imaging;

VAMPIRE project (A. Giachetti et al., 2013)

Simone Parisotto (vr356435) March 13th, 2014 2 / 25

Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications.

Many research fields have to treat with image processing:

in cultural heritage;

in medical imaging;

in film restoration;

A. Buadès, S. Masnou et al. (2010)

Simone Parisotto (vr356435) March 13th, 2014 2 / 25

Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications.

Many research fields have to treat with image processing:

in cultural heritage;

in medical imaging;

in film restoration;

in image denoising.

A. Chambolle, T. Pock (2010)

Simone Parisotto (vr356435) March 13th, 2014 2 / 25

Motivation of our work

Motivation of our work

Describing and solving, in mathematical words, important and concrete applications.

Many research fields have to treat with image processing:

in cultural heritage;

in medical imaging;

in film restoration;

in image denoising.

In some of these projects I am still involved for further researches.

Simone Parisotto (vr356435) March 13th, 2014 2 / 25

Motivation of our work

Plan of our work

This work aims to:

Study relevant image processing tasks by

variational and PDE methods:

to model inpainting;

to model shadow removal;

See connection between the 2 problems;

Show how to speed up the computational

time for solving shadow removal;

Mathematical framework:

Geometric Measure Theory;

Functions of Bounded Variation;

Sets of Finite Perimeters;

Drift-Diffusion equation;

Inpainting - Criminisi et al. (2003)

Shadow Removal - Finlayson et al. (2006)

Simone Parisotto (vr356435) March 13th, 2014 3 / 25

Basics on BV functions

Basics on BV functions

Key idea: to describe images by gray level lines (all geometric information lie on edges)

suitable setting: BV functions (natural for describing boundary discontinuities);

Distributional definition of BV function

Let u ∶∈ Ω ⊂ Rn → R. Then u ∈ BV(Ω) if Du is a vector Radon measure, i.e.

⟨Du, ϕ⃗⟩ = −∫
Ω

u div ϕ⃗ = ∫
Ω
ϕ⃗ ⋅ dDu ∀ϕ⃗ ∈ [C∞

0 (Ω)]m

Du is only concentrated on the boundaries;

Du = −ν⃗∣Du∣, with ∣ν∣ = 1 and ∣Du∣-a.e.

Total variation of u

∣Du∣(Ω) = sup{∫
Ω

u div ϕ⃗, ∥ϕ⃗∥∞ ≤ 1, ϕ⃗ ∈ C
∞
c (Ω)n}

dealing with BV functionsÐ→ Sets of Finite Perimeters;

Simone Parisotto (vr356435) March 13th, 2014 4 / 25

Basics on BV functions

Sets of Finite Perimeters

A is of Finite Perimeter in Ω if and only if χA ∈ BV(Ω): P(A; Ω) ≡ ∣DχA∣(Ω).

Ω

A

ν∂∗A
∂A

DχA encodes all geometric information on ∂A ∩Ω;

∂∗A (reduced boundary) isHn−1
-rectifiable;

DχA = ν∂∗AHn−1 ¬
∂∗A so it is concentrated only

on the boundaries;

Gauss-Green: ∫A divϕ = ∫∂∗A
ϕ ⋅ ν dHn−1

;

measure-theoretic notion of tangent space;

Coarea Formula

Let u ∶ Rn → R a Lipschitz function, A ⊂ Rn
open.

∫
A

∣∇ u∣ = ∫
R

P({u > t}; A)dt as elements of [0,∞].

The total variation of a function is the accumulated surfaces of all its level sets.

Simone Parisotto (vr356435) March 13th, 2014 5 / 25

Functions of Bounded Variation

Functions of Bounded Variation

C. Jordan (1881): functions with control on the oscillations (Fourier series);

M. Miranda (1964): V(u,Ω) = sup{ ∫Ω u divϕdx ∶ ϕ ∈ [C1
c(Ω)]n, ∥ϕ(x)∥∞ ≤ 1}

The BV(Ω) space is a Banach space with the norm ∥u∥BV(Ω) = ∫Ω∣u∣dx + ∣Du∣(Ω).

lower semicontinuity: V(u,Ω) ≤ lim infh→∞ V(uh,Ω);

Convexity: V(tu1 + (1 − t)u2,Ω) ≤ tV(u1,Ω) + (1 − t)V(u2,Ω);

u ∈ [BV(Ω)]m ⇐⇒ V(u,Ω) <∞;

Theorem (Federer-Vol’pert)

Let u ∈ [BV(Ω)]m
. The discontinuity set isHn−1

-rectifiable andHn−1(Su ∖ Ju) = 0. Then

Du = ∇ u(x)dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dau

+ (u+(x) − u−(x))⊗ νu(x)dHn−1 ¬
Ju

´¹¹¸¹¹¶
Dj u

+D
s
u
¬ (Ω ∖ Su)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dcu

.

V(u,Ω) ≡ ∣Du∣(Ω), ∀u ∈ [BV(Ω)]m
;

Simone Parisotto (vr356435) March 13th, 2014 6 / 25

Functions of Bounded Variation

Functions of Special Bounded Variation

introduced by E. De Giorgi, L. Ambrosio (1988);

good candidate where both volume and surface energies are involved;

relevant for images;

SBV space

Let u ∈ BV(Ω), then u ∈ SBV(Ω) if D
c
u = 0:

Du = D
a
u + D

j
u = ∇ uLn + (u

+ − u
−)νuHn−1 ¬

Ju, ∀u ∈ SBV(Ω).

W1,1(Ω) ⊂ SBV(Ω) ⊂ BV(Ω).

if u ∈ W1,1(Ω), or u ∈ C
1(Ω), then Du = D

a
u;

if u = χA and ∣A∣ <∞, then Du = D
j
u (not Sobolev because Du = νAHn−1 ¬

∂∗A);

if u is the Cantor-Vitali function, then Du = D
c
u;

Simone Parisotto (vr356435) March 13th, 2014 7 / 25

Motivational Example

Motivational Example

We are involved in several cutting and pasting domains. Let u, v ∈ [BV(Ω)]m
.

Is w = uχA + vχΩ∖A ∈ [BV(Ω)]m
?

Can Dw be expressed?

Let u, v ∈ [BV(Ω)]m
, A ⊂ Ω a set of finite perimeter with ∂∗A ∩Ω oriented by νA. Let

u
+
∂∗A

, v
−
∂∗A

(interior and exterior trace of u and v) given forHn−1
-a.e. x ∈ ∂∗A∩Ω. Then

w = uχA + vχΩ∖A ∈ [BV(Ω)]m ⇐⇒ ∫
∂∗A∩Ω

∣u+∂∗A − v
−
∂∗A∣dHn−1 <∞,

Dw = Du
¬
A

1 + (u
+
∂∗A − v

−
∂∗A)⊗ νAHn−1 ¬ (∂∗A ∩Ω) + Dv

¬
A

0.

Let u, v ∈ W1,1(Ω) ∩ L∞(Ω), A ⊂ Ω be a set of finite perimeter. Then

w = uχA + vχΩ∖A ∈ SBV(Ω),
Dw = [∇ uχA +∇ vχΩ∖A]Ln + (ũ − ṽ)νAHn−1 ¬ (Ω ∩ ∂∗A).

Simone Parisotto (vr356435) March 13th, 2014 8 / 25

The inpainting problem

The inpainting problem

very common in film restoration and image retouching;

digital inpainting: retouching or recovering damaged ancient paintings (2001);

we don’t want to recover the true missing patch;

we aim to create a new natural one;

interpolation problem with unknown regularity degree (we are in BV space);

geometric, sparse or exemplar-based approaches.

Original Inpainting domain Bornemann (2007)

Simone Parisotto (vr356435) March 13th, 2014 9 / 25

The inpainting problem Geometric approach: The Euler’s Elastica

Geometric approach: The Euler’s Elastica

image smoothness is expressed by total variation or curvature of level lines;

the boundary data are propagated to predict the missing geometric structure;

local method based on PDE but fails in presence of texture;

Γ Euler’s elastica if it is the equilibrium curve of the elasticity energy (1744):

E2[γ] = ∫
γ
(a + bκ2)ds,

from C.o.V., we obtain a fourth order equation: 2κ′′(s) + κ3(s) = a

b
κ(s);

Occlusion Possible connection Situation Approximation

Simone Parisotto (vr356435) March 13th, 2014 10 / 25

The inpainting problem Geometric approach: The Euler’s Elastica

along any isophote γλ ∶ u ≡ λ, the curvature of the oriented curve is given by

κ = ∇ ⋅n⃗ = ∇ ⋅(∇ u

∣∇ u∣
) = div(∇ u

∣∇ u∣
) = H = κ1 + κ2 (mean curvature);

dt is the length element along n⃗ so ∂λ/∂t = ∣∇ u∣ or dλ = ∣∇ u∣dt ;

J[u] = E[F] =∫
1

0
∫
γλ∶u=λ

(a + bκ2)ds dλ

∫
1

0
∫
γλ∶u=λ

(a + b(∇ ⋅ ∇ u

∣∇ u∣
)

2

)∣∇ u∣dt ds

∫
D

(a + b(∇ ⋅ ∇ u

∣∇ u∣
)

2

)∣∇ u∣dx, with u ∈ BV(Ω).

suitable boundary conditions;

if a/b =∞, then TV(u) = ∫Ω∣∇ u∣, with the condition u∣Ω∖D = u0∣Ω∖D .

Theorem: The noise free TV inpainting model (Chan, Shen)

Suppose that u0 ∈ BV(Ω), u0 ⊂ [0, 1]. Then the noise free TV inpainting model TV(u),

together with the gray value constraint u ⊂ [0, 1], has one optimal inpainting at least.

Simone Parisotto (vr356435) March 13th, 2014 11 / 25

The inpainting problem Sparse approach based on (consistent) dictionaries

Sparse approach based on (consistent) dictionaries

Input

Simone Parisotto (vr356435) March 13th, 2014 12 / 25

The inpainting problem Sparse approach based on (consistent) dictionaries

Sparse approach based on (consistent) dictionaries

Hays - Efros

Simone Parisotto (vr356435) March 13th, 2014 12 / 25

The inpainting problem Exemplar-based approach: Variational Framework

Exemplar-based approach: Variational Framework

patches similarity within the image: correspondence maps ϕ ∶ O → O
c
;

the whole image is scanned (greedy algorithm but sensitive to the order);

Demanet (2003): variational formulation searching u(x) = û(ϕ(x)), for x ∈ O:

E(ϕ) = ∫
O
∫

Ωp

∣̂u(ϕ(x + h)) − û(ϕ(x) + h)∣2 dh dx (non-convex);

Gilboa, Osher (2007): replace ϕ with weights w(x, y), subject to ∫Õc w(x, y) = 1;

Arias, Caselles, Facciolo (2011)

min∫
Õ
∫

Õc

w(x, y)ε (pu(x) − pû(y))dy dx + T ∫
Õ
∫

Õc

w(x, y) log(w(x, y))dy dx

when T → 0 the weights are the correspondence map: w(x, x̂) = δ(̂x − ϕ(x)).

NL Means: P ≡ L2(Ωp), ε(pu(x) − pû(y)) = ∥pu(x) − pû(y)∥2
g .

NL Poisson: P ≡ W1,2(Ωp), ε(pu(x) − pû(y)) = ∥pu(x) − pû(y)∥2
∇,g .

NL Gradient Medians: P ≡ BV(Ωp), ε(pu(x) − pû(y)) = ∥pu(x) − pû(y)∥∇,g .

Simone Parisotto (vr356435) March 13th, 2014 13 / 25

The inpainting problem Exemplar-based approach: Variational Framework

solution’s structure: rototranslation of patches;

NL-Poisson patch metric function

E∇,T(u,w) = ∫
Õ
∫

Õc

w(x, y)∥pu(x) − pû∥2

g,∇ dy dx + T ∫
Õ
∫

Õc

w(x, y) log w(x, y)dy,

Euler-Lagrange equations respect w and u Osmosis

wε,T(u)(x, y) = 1

Zε,T(u)(x)
exp(−1

T
ε(pu(x) − pû(y))) ,

⎧⎪⎪⎨⎪⎪⎩

∆u(z) = div v(w)(z), z ∈ O,

u = û, in ∂O,
Ô⇒ min∫

Õ

∥∇ u(z) − v(w)(z)∥2

2 dz.

Simone Parisotto (vr356435) March 13th, 2014 14 / 25

The inpainting problem Exemplar-based approach: Variational Framework

Existence of minima for NL-Means and NL-Poisson

Existence of minima for NL-Means approach - Arias et al. (2011)

Assume g ∈ Cc(Rn)+, supp g ∈ Ωp, ∇g ∈ L1(Rn) and û ∈ BV(O
c) ∩ L∞(O

c).

If (un,wn) ∈ A2 is a minimizing sequence for E2,T such that un is uniformly

bounded, then we may extract a subsequence converging to a minimum of E2,T .

There exist a minimum (u,w) ∈ A2 of E2,T . For any minimum (u,w) ∈ A2 we have

that u ∈ W
1,∞(O) and w ∈ W

1,∞(Õ × Õ
c).

Existence of minima for NL-Poisson approach - Arias et al. (2011)

Assume û ∈ W2,2(O
c) ∩ L∞(O

c), g ∈ W1,∞(Rn)+, supp g ∈ Ωp compact.

There exists a solution of the variational problem min(u,w)∈A∇
E∇,T(u,w).

For any solution (u,w) ∈ A∇ we have u ∈ W1,2(O) ∩W2,p
loc (O) ∩ L∞(O) for all

p ∈ [1,∞] and w ∈ W1,∞(Õ × Õ
c).

Simone Parisotto (vr356435) March 13th, 2014 15 / 25

The inpainting problem Exemplar-based approach: Variational Framework

Algorithms and Visual Results - Arias, Caselles, Facciolo (2011)

Some numerical details:

Patchmatch (2009) for patch comparison: faster than kd-tree;

because of high probability to fall in local minima: multiscale approach;

Alternating optimization for NL-means model

Input: u
0

with ∥u
0
∥∞ ≤ ∥û∥∞.

1: for each k ∈ N do
2: w

k+1
= arg minw∈W E2,T (u

k ,w),

3: u
k+1

= arg minu E2,T (u,wk+1
).

4: end for

Alternating optimization for NL-Poisson model

Input: u
0

with ∥u
0
∥∞ ≤ ∥û∥∞.

1: for each k ∈ N do
2: w

k+1
= arg minw∈W E∇,T (u

k ,w),

3: u
k+1

= arg minu∈W1,2, u∣∂Oc=û∣∂Oc
E∇,T (u,wk+1

).

4: end for

Original KSY NL-Means NL-Poisson

Simone Parisotto (vr356435) March 13th, 2014 16 / 25

Drift Diffusion PDE

Drift Diffusion PDE - Weickert (2013)

Osmosis: omnipresent in nature (it transports water across membranes);

diffusion (symmetric processes) leads to flat steady states;

osmosis (nonsymmetric counterpart of diffusion) allows nonconstant steady states;

a system is in a steady state for a property p if ∂tp = 0.

Fokker-Plank equation (time evolution of the p.d.f. of the velocity of a particle)

The continuous model

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

∂u

∂t
= ∆u − div(du), on Ω × (0, T]

u(x, 0) = f(x), on Ω

⟨∇ u − du, n⟩ = 0, on ∂Ω × (0, T]

preservation of the Average Grey Value;

preservation of Positivity;

convergence to Nontrivial Steady State

when d = ∇ log v ;

Associated minimization problem NL-Poisson

min∫
Ω

v ∣∇(u

v
)∣

2

dx, or min∫
Ω
∣∇ u − du∣2 dx

Simone Parisotto (vr356435) March 13th, 2014 17 / 25

Drift Diffusion PDE

Drift Diffusion PDE - Weickert (2013)

Osmosis: omnipresent in nature (it transports water across membranes);

diffusion (symmetric processes) leads to flat steady states;

osmosis (nonsymmetric counterpart of diffusion) allows nonconstant steady states;

a system is in a steady state for a property p if ∂tp = 0.

Fokker-Plank equation (time evolution of the p.d.f. of the velocity of a particle)

The discrete model

∂ui,j

∂t
=(

1

h2
−

d
1,i+ 1

2
,j

2h
) ui+1,j + (

1

h2
+

d
1,i− 1

2
,j

2h
) ui−1,j

+ (
1

h2
−

d
2,i,j+ 1

2

2h
) ui,j+1 + (

1

h2
+

d
2,i,j− 1

2

2h
) ui,j−1

+ (−
4

h2
−

d
1,i+ 1

2
,j

2h
+

d
1,i− 1

2
,j

2h
−

d
2,i,j+ 1

2

2h
+

d
2,i,j− 1

2

2h
) ui,j = P[ui,j].

suppose to know shadow boundaries for applications we have in mind;

Simone Parisotto (vr356435) March 13th, 2014 17 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

∂tu = ∆u − div(du) Ô⇒ ∂tu = Pu (only P needed)

Exponential Integrators;

⎧⎪⎪⎨⎪⎪⎩

y′(t) = Ay(t) + b(t, y(t)), t > t0

y(t0) = y0,

whose analytical solution is, with ϕ1(z) = (ez − 1)/z

y(t) = exp((t − t0)A)y0 + ∫
t

t0

exp((t − τ)A)b(τ, y(τ))dτ,

y(t) = exp((t − t0)A)y0 + (t − t0)ϕ1((t − t0)A)b = y0 + (t − t0)ϕ1((t − t0)A)(Ay0 + b).

no need to compute exp(P) but exp(P)u (Krylov methods for P big and sparse)

A = VmHmV
T

m Ô⇒ exp(A)Vm ≈ Vm exp(Hm) Ô⇒ exp(A)v ≈ Vm exp(Hm)e1

Euler exponential method is exact if b(y(t)) = b(y0) ≡ b or of order 1 otherwise.

scripts from Al-Mohy and Higham(2011) and Sidje(1998) have been tested;

Simone Parisotto (vr356435) March 13th, 2014 18 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

∂tu = ∆u − div(du) Ô⇒ u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t

Exponential Integrators;

θ-method with direct method: LUpq factorization

[L,U,p,q]=lu(I-dt*theta*A,’vector’);

B = (I+dt*(1-theta)*A);

for t = (dt:dt:T)

C = B*y;

y(q) = U\(L\(noto(p)));

end

Simone Parisotto (vr356435) March 13th, 2014 19 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

∂tu = ∆u − div(du) Ô⇒ u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t

Exponential Integrators;

θ-method with direct method: LUpq factorization

10
−3

10
−2

10
−1

10
0

10
1

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

LUpq, θ = 0.5

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

10
4

10
6

LUpq, θ = 1

Simone Parisotto (vr356435) March 13th, 2014 19 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

∂tu = ∆u − div(du) Ô⇒ u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

Simone Parisotto (vr356435) March 13th, 2014 20 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

∂tu = ∆u − div(du) Ô⇒ u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

BiCGStab: standard, fixed timestep dt until T fixed is reached;

y=bicgstab(I-dt*theta*A,(I+dt*(1-theta)*A)*y,tol,maxit);

y=bicgstab(I-dt*theta*A,(I+dt*(1-theta)*A)*y,tol,maxit,[],[],y);

y=bicgstab(I-dt*theta*A,(I+dt*(1-theta)*A)*y,tol,maxit,L,U,y);

It is not satisfactory at all (first steps are the most important ones - far away from steady state).

Simone Parisotto (vr356435) March 13th, 2014 20 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

∂tu = ∆u − div(du) Ô⇒ u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

BiCGStab: standard, fixed timestep dt until T fixed is reached;

A-BiCGStab: adaptative, variable timestep dt until T fixed is reached;

% k = number of iterations in BiCGStab

averit = 35*maxit/50;

safe_zone = [0.8*averit,1.2*averit];

dt(t+1) =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

1.2*dt(t) if k<min(safe_zone) steps

1.0*dt(t) if min(safe_zone)<k<max(safe_zone) steps

0.8*dt(t) if k>max(safe_zone) steps

0.5*dt(t) otherwise (don’t increase t).

Simone Parisotto (vr356435) March 13th, 2014 20 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

∂tu = ∆u − div(du) Ô⇒ u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

BiCGStab: standard, fixed timestep dt until T fixed is reached;

A-BiCGStab: adaptative, variable timestep dt until T fixed is reached;

0 100 200 300 400 500 600 700 800 900 1000
554

554.2

554.4

554.6

554.8

555

555.2

555.4

A-BiCGStab: norm(y)

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

15

20

25

30

35

40

A-BiCGStab: Iters

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

A-BiCGStab: dt

Simone Parisotto (vr356435) March 13th, 2014 20 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

∂tu = ∆u − div(du) Ô⇒ u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

BiCGStab: standard, fixed timestep dt until T fixed is reached;

A-BiCGStab: adaptative, variable timestep dt until T fixed is reached;

0 100 200 300 400 500 600 700 800 900 1000
554

554.2

554.4

554.6

554.8

555

555.2

555.4

A-BiCGStab+ilu: norm(y)

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

15

20

25

30

35

40

A-BiCGStab+ilu: Iters

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

140

160

A-BiCGStab+ilu: dt

Simone Parisotto (vr356435) March 13th, 2014 20 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

∂tu = ∆u − div(du) Ô⇒ u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

BiCGStab: standard, fixed timestep dt until T fixed is reached;

A-BiCGStab: adaptative, variable timestep dt until T fixed is reached;

F-BiCGStab: standard, fixed timestep dt until exit condition is true;

norm(y_new-y)/norm(y_new) < dt * tol_exit;

Simone Parisotto (vr356435) March 13th, 2014 20 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

∂tu = ∆u − div(du) Ô⇒ u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

BiCGStab: standard, fixed timestep dt until T fixed is reached;

A-BiCGStab: adaptative, variable timestep dt until T fixed is reached;

F-BiCGStab: standard, fixed timestep dt until exit condition is true;

FA-BiCGStab: adaptative, variable timestep dt until exit condition is true;

norm(y_new-y)/norm(y_new) < dt(t) * tol_exit;

Simone Parisotto (vr356435) March 13th, 2014 20 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t
;

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

mirror the image to guess the periodic boundary condition;

large timestep: error from reference is upper bounded by Gibbs

phenomenon on high jumps of colours;

d can be modified when/where necessary (e.g. d = d. ∗ umask);

Simone Parisotto (vr356435) March 13th, 2014 21 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t
;

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

(I − dtθ1∆ − dtθ2D)u
t+1 = (I + dt(1 − θ1)∆ + dt(1 − θ2)D)u

t
;

Algorithm 1: Semi-implicit solver with bridge Fourier collocation

Input: u
0

(original image, 2D matrix of N rows and M columns), k pixel-indexes.

Output: u
T

at time T = t
end

.

1: coeff = (1 + 4kπ2dt);

2: A = (I + dtD);

3: for t = dt ∶ dt ∶ T do
4: u = reshape(Au(∶),N,M); v̂ = fft2(u)./coeff;

5: u = ifft2(v̂);

6: end for

Simone Parisotto (vr356435) March 13th, 2014 21 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t
;

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

u
t+1 = (I − dt∆)−1(I + dtD)u

t
;

Algorithm 1: Semi-implicit solver with bridge Fourier collocation

Input: u
0

(original image, 2D matrix of N rows and M columns), k pixel-indexes.

Output: u
T

at time T = t
end

.

1: coeff = (1 + 4kπ2dt);

2: A = (I + dtD);

3: for t = dt ∶ dt ∶ T do
4: u = reshape(Au(∶),N,M); v̂ = fft2(u)./coeff;

5: u = ifft2(v̂);

6: end for

Simone Parisotto (vr356435) March 13th, 2014 21 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t
;

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

u = ∑∣k ∣∞≤N uke2iπx⋅k
and ∆u = −∑∣k ∣∞≤N uk4π2∣k ∣2e2iπx⋅k

;

Algorithm 1: Semi-implicit solver with bridge Fourier collocation

Input: u
0

(original image, 2D matrix of N rows and M columns), k pixel-indexes.

Output: u
T

at time T = t
end

.

1: coeff = (1 + 4kπ2dt);

2: A = (I + dtD);

3: for t = dt ∶ dt ∶ T do
4: u = reshape(Au(∶),N,M); v̂ = fft2(u)./coeff;

5: u = ifft2(v̂);

6: end for

Simone Parisotto (vr356435) March 13th, 2014 21 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t
;

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

∑∣k ∣∞≤N vke2iπx⋅k = v = (I − dt∆)u = ∑∣k ∣∞≤N (1 + dt4π2∣k ∣2)uke2iπx⋅k
;

Algorithm 1: Semi-implicit solver with bridge Fourier collocation

Input: u
0

(original image, 2D matrix of N rows and M columns), k pixel-indexes.

Output: u
T

at time T = t
end

.

1: coeff = (1 + 4kπ2dt);

2: A = (I + dtD);

3: for t = dt ∶ dt ∶ T do
4: u = reshape(Au(∶),N,M); v̂ = fft2(u)./coeff;

5: u = ifft2(v̂);

6: end for

Simone Parisotto (vr356435) March 13th, 2014 21 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

u
t+1 = (I − dtθP)−1(I + dt(1 − θ)P)u

t
;

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

uk = vk

(1+dt4π2∣k ∣2) .

Algorithm 1: Semi-implicit solver with bridge Fourier collocation

Input: u
0

(original image, 2D matrix of N rows and M columns), k pixel-indexes.

Output: u
T

at time T = t
end

.

1: coeff = (1 + 4kπ2dt);

2: A = (I + dtD);

3: for t = dt ∶ dt ∶ T do
4: u = reshape(Au(∶),N,M); v̂ = fft2(u)./coeff;

5: u = ifft2(v̂);

6: end for

Simone Parisotto (vr356435) March 13th, 2014 21 / 25

Drift Diffusion PDE Solving the Drift-Diffusion PDE for Shadow Removal

Solving the Drift-Diffusion PDE for Shadow Removal

∂tu = ∆u − div(du) Ô⇒ u
t+1 − dt∆u

t+1 = u
t − dt div((∇ log u) u

t);

Exponential Integrators;

θ-method with direct method: LUpq factorization;

θ-method with iterative method: BiCGStab and variants;

semi-Fourier collocation, full-Fourier collocation;

Algorithm 2: Semi-implicit solver with fully Fourier collocation

Input: u
0

(original image, 2D matrix of N rows and M columns), k pixel-indexes.

Output: u
T

at time T = t
end

.

1: define the flag_log = {0, 1} variable, useful to change the computation of d.

2: if flag_log then
3: d = ∇ log u = ifft2(fft2(log u). ∗ (2πik))
4: else
5: d = ∇ u./u = (ifft2(fft2(u). ∗ (2πik)))./u;

6: end if
7: coeff = (1 − 4kπ2dt);

8: for t = dt ∶ dt ∶ T do
9: div(du) = ifft2((fft2(du). ∗ (2πik))); u = ifft2(fft2(u − dt div(du))./coeff)

10: end for

Simone Parisotto (vr356435) March 13th, 2014 21 / 25

Drift Diffusion PDE Numerical Results

Numerical Results

Parameters: dt = 1 (*for Fourier (F), dt = 100), tol_bicgstab=10
−06

, tol_exit=10
−06

and maxit = 30.

θ = 0.5 LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 5963 7177.26 1000 1000 6933 7579.16

I - 2968.5 1359 15394 4082 1585 516 9979.5 1485

R - 0 0 0 4 0 0 0 2

E 1.47e-08 1.68e-04 1.19e-03 - - 1.03e-04 1.21e-03 - -

C 86.80 138.12 24.43 804.32 73.34 192.73 19.37 1308.37 51.36

θ = 1 LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 5618 7798.39 1000 1000 6935 7856.53

I - 3306.5 1717 15897.5 4529.5 1785 753 10180.5 2298.5

R - 0 1 0 13 0 0 0 2

E 4.59e-05 1.47e-04 4.53e-03 - - 2.04e-04 3.94e-03 - -

C 84.27 125.36 30.04 679.08 83.84 181.92 25.63 1203.16 75.19

Ref. expmv LUpq BiCGStab BiCGStab + ilu expv F. Alg. 1 F. Alg. 2

T 1000 1000 1000 1000 1000 1000* 1000*

θ - 1 0.5 0.5 - - -

I - - 1359 516 - - -

R - - 0 0 - - -

E - 4.59e-05 1.19e-03 1.21e-03 1.73e-04 0.1275 0.1080

C 206.26 84.27 24.43 19.37 25.07 4.80 10.94

Simone Parisotto (vr356435) March 13th, 2014 22 / 25

Drift Diffusion PDE Numerical Results

Numerical Results

Parameters: dt = 1 (*for Fourier (F), dt = 100), tol_bicgstab=10
−07

, tol_exit=10
−07

and maxit = 30.

θ = 0.5 LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 16619 23061.54 1000 1000 20430 24228.54

I - 3398.5 1872 38248 11660 3066 680.5 27837.5 3859

R - 0 4 0 24 0 0 0 7

E 1.47e-08 2.24e-05 4.09e-03 - - 9.58e-06 1.20e-03 - -

C 86.80 147.61 35.2 1996 215.72 233.46 24.33 3428.48 130.35

θ = 1 LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 15358 22299.95 1000 1000 20433 21338.26

I - 4032.5 2407.5 39377.5 10806 3332.5 1036 31189 5774.5

R - 0 4 0 47 0 0 0 6

E 4.59e-05 6.59e-05 4.80e-03 - - 7.21e-05 3.22e-03 - -

C 84.27 137.13 43.44 1748.14 209.73 225.12 34.25 3240.42 187.02

Ref. expmv LUpq BiCGStab BiCGStab + ilu expv F. Alg. 1 F. Alg. 2

T 1000 1000 1000 1000 1000 1000* 1000*

θ - 1 0.5 0.5 - - -

I - - 1872 680.5 - - -

R - - 4 0 - - -

E - 4.59e-05 4.09e-03 1.20e-03 1.73e-04 0.1275 0.1080

C 206.26 84.27 35.2 24.33 25.07 4.80 10.94

Simone Parisotto (vr356435) March 13th, 2014 22 / 25

Drift Diffusion PDE Numerical Results

Input Reference with expmv.m

LUpq, θ = 1 A-BiCGStab + ilu, θ = 0.5

Simone Parisotto (vr356435) March 13th, 2014 23 / 25

Drift Diffusion PDE Numerical Results

Input Reference with expmv.m

Fourier Alg. 1 Error Alg. 1

Simone Parisotto (vr356435) March 13th, 2014 23 / 25

Drift Diffusion PDE Numerical Results

Input Reference with expmv.m

Fourier Alg. 2 with d = ∇ u/u Error Alg. 2 with d = ∇ u/u

Simone Parisotto (vr356435) March 13th, 2014 23 / 25

Drift Diffusion PDE Numerical Results

Input Reference with expmv.m

Fourier Alg. 2 with d = ∇ log u Error Alg. 2 with d = ∇ log u

Simone Parisotto (vr356435) March 13th, 2014 23 / 25

Drift Diffusion PDE Numerical Results

Input

F-BiCGStab, θ = 0.5 F-BiCGStab + ilu, θ = 0.5

Simone Parisotto (vr356435) March 13th, 2014 23 / 25

Drift Diffusion PDE Numerical Results

Input

FA-BiCGStab, θ = 0.5 FA-BiCGStab + ilu, θ = 0.5

Simone Parisotto (vr356435) March 13th, 2014 23 / 25

Drift Diffusion PDE Other application: seamless image cloning

Other application: seamless image cloning

fuse incompatible information - Poisson Image Editing, Perez (2003);

interpolant f2 of f1 over Γ is the solution of

(Euler - Lagrange) ∆f2 = 0, on Γ, with f2 = f1, on ∂Γ Ô⇒ blurred;

guidance vector field p:

(Euler - Lagrange) ∆f2 = div p, on Γ, with f2 = f1, on ∂Γ Ô⇒ p = ∇ f2;

Euler Lagrange

f2

Γ

∂Γ

f1

Ω

Notation Input

Simone Parisotto (vr356435) March 13th, 2014 24 / 25

Drift Diffusion PDE Other application: seamless image cloning

Other application: seamless image cloning

fuse incompatible information - Poisson Image Editing, Perez (2003);

interpolant f2 of f1 over Γ is the solution of

(Euler - Lagrange) ∆f2 = 0, on Γ, with f2 = f1, on ∂Γ Ô⇒ blurred;

guidance vector field p:

(Euler - Lagrange) ∆f2 = div p, on Γ, with f2 = f1, on ∂Γ Ô⇒ p = ∇ f2;

Euler Lagrange Pérez (2003) Osmosis: mean on ∂Γ

Simone Parisotto (vr356435) March 13th, 2014 24 / 25

Conclusions and Future Works

Conclusions and Future Works

Fourier is the fastest way tested despite of a visually negligible Gibbs phenomenon;

FA-BiCGStab or Exponential Integrators are alternative approaches;

connection between NL-Poisson inpainting and shadow removal problems;

better control on stopping criterion for BiCGStab;

to model non-constant shadow areas: variational model to inpaint the light?

simple old equations are still useful to model new computer vision problems;

Simone Parisotto (vr356435) March 13th, 2014 25 / 25

Conclusions and Future Works

Thank you for your attention.

Simone Parisotto (vr356435) March 13th, 2014 25 / 25

	Motivation of our work
	Basics on BV functions
	Functions of Bounded Variation
	Motivational Example
	The inpainting problem
	Geometric approach: The Euler's Elastica
	Sparse approach based on (consistent) dictionaries
	Exemplar-based approach: Variational Framework

	Drift Diffusion PDE
	Solving the Drift-Diffusion PDE for Shadow Removal
	Numerical Results
	Other application: seamless image cloning

	Conclusions and Future Works

