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Treat nature in terms of the cylinder, the sphere, and the

cone, the whole put into perspective so that each side of

an object, or of a plane, leads towards a central point.

— Paul Cézanne

Clouds are not spheres, mountains are not cones,

coastlines are not circles, and bark is not smooth, nor

does lightning travel in a straight line.

— Benoît Mandelbrot





Abstract

This work deals with variational and PDE methods for computer vision applications such as inpainting,

shadow removal and other image processing tasks. Inpainting (as well as image restoration) is a wide and

open research field: when a corrupted image is given, typically with a hole where data are missing, one

wants to get a credible retouching based on the information surrounding the hole itself. This problem

can be attacked with geometric or exemplar-based methods: the former consider the propagation

of level lines according to the curvature c, as e.g. [Masnou and Morel(1998), Chan et al.(2002)]; the

latter, presented for instance in the very recent work [Arias et al.(2011)], extends the texture-oriented

approach by [Efros and Leung(1999)] minimizing a functional whose core is a patch-comparison

metric distance. One of these metrics, called Non local Poisson, is associated to a diffusion-transport

Euler-Lagrange equation and provides good results when the illumination changes within the inpainting

domain: the same equation arises in contexts dealing with lightings, such as the Shadow Removal

problem, where the aim is to recover the information underlying shadow areas. The Shadow Removal

problem can be modelled as in [Weickert et al.(2013)] by means of a drift-diffusion equation, and

solved, as in [Vogel et al.(2013)] with the iterative BiCGStab solver. In our work, we aimed to test

other numerical methods such as Exponential Integrators, which are exact in the time discretization

domain, and Fourier-based collocation methods. For the sake of completeness, we propose here also

some variants to the standard BiCGStab algorithm in order to adapt the timesteps to the number of

iterations expected from the iterative solver. This is useful when the precision of the solution must be

seriously considered while Exponential Integrators result too much slow. Our contribution shows a

very strong speed up in the computation time (despite of a visually negligible Gibbs phenomenon

when using the Fourier approach).

This thesis is organized as follows: the first three chapters deal with the necessary theoretical

background concerning basic notions and main results of Geometric Measure Theory, Finite Perimeter

Sets and Functions of Bounded Variation (BV for short). In Chapter 4, we discuss the Inpainting

Problem in a BV context with both previously cited approaches. Finally, in Chapter 5, we describe the

connection between the Inpainting and the Shadow Removal Problem by completing our dissertation

with some numerical experiments.
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CHAPTER 1
Measure Theory

We introduce some results from Measure Theory and Functional Analysis. For more details, we refer

to [Brezis(2010)] and [Ambrosio et al.(2000)].

1.1 Basic results

Definition 1.1 (σ -algebra and measure spaces). Let X be a non-empty set and let A ⊂ P (X ) a

collection of subsets of X . Then

• A is an algebra if ; ∈A , A1 ∪A2 ∈A and X \A1 ∈A whenever A1, A2 ∈A ;

• an algebraA is a σ -algebra if for any sequence {Ah}h∈N ⊂A we have
⋃

h∈NAh ∈A ;

• ifA is a σ -algebra in X , we call the pair (X ,A ) a measure space.

Definition 1.2 (Positive measure). Let (X ,A ) be a measure space and µ :A → [0,∞]. Then

• µ is additive if, for A1, A2 ∈A ,

A1 ∩A2 = ; =⇒ µ(A1 ∪A2) =µ(A1)+µ(A2);

• µ is σ -subadditive if, for A∈A and {Ah}h∈N ⊂A ,

A⊂
∞
⋃

h=0

Ah =⇒ µ(A)≤
∞
∑

h=0

µ(Ah );

• µ is a positive measure if µ(;) = 0 and µ is σ -additive onA , i.e. for any sequence {Ah}h∈N of

pairwise disjoint elements ofA we have

µ

 

∞
⋃

h=0

Ah

!

=
∞
∑

h=0

µ(Ah );
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• µ is finite if µ(X )<∞;

• the set A⊂ X is σ -finite with respect to positive measure µ if it is the union of an increasing

sequence of sets with finite measure. If X itself is σ -finite, then µ is σ -finite;

• a positive measure µ such that µ(X ) = 1 is also called a probability measure.

We introduce the vector-valued measures, which is a key definition in the BV function theory because

the gradient of a Bounded Variation function, in the sense of distributions, is a measure of this kind.

Definition 1.3 (Real and vector measure). Let (X ,A ) a measure space and m ∈N, m ≥ 1. Then

• µ :A →Rm is a measure ifµ(;) = 0 and for any sequence {Ah}h∈N of pairwise disjoint elements

ofA ,

µ

 

∞
⋃

h=0

Ah

!

=
∞
∑

h=0

µ(Ah ).

If m = 1 we say that µ is a real measure; if m > 1 we say that µ is a vector measure;

• if µ is a measure, we define its total variation |µ| for every A∈A as

|µ|(A) = sup

¨ ∞
∑

h=0

|µ(Ah )| : Ah ∈A pairwise disjoint, A=
∞
⋃

h=0

Ah

«

;

• if µ is a real measure, we define its positive and negative parts respectively as follows:

µ+ =
|µ|+µ

2
and µ− =

|µ| −µ
2

.

which are both positive finite measures: thus the Jordan decomposition for µ holds:

µ=µ+−µ−.

Theorem 1.4. If µ is a measure on (X ,A ), then |µ| is a positive finite measure.

Remark 1.5. Positive measures differ from real measures since real measures must be finite.

Definition 1.6 (µ-negligible sets). Let µ be a positive measure on the measure space (X ,A ). Then

• a set N ⊂X is µ-negligible if there exists A∈A such that N ⊂A and µ(N ) = 0.

• a property P (x) depending on the point x ∈ X holds µ-a.e. in X if the set where P fails is a

µ-negligible set;

• let Aµ be the collection of all the subsets of X of the form F = A∪N , with A ∈ A and

N µ-negligible. Then Aµ is a σ -algebra and A ⊂ X is µ-measurable if A ⊂ Aµ. Moreover

µ(F ) =µ(A).
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Definition 1.7 (Measurable functions). Let (X ,A ) a measure space, (Y, d ) a metric space. Let

u : X → Y a function. Then

• u isA -measurable on X if u−1(A) ∈A for every open set A⊂ Y ;

• if µ is a positive measure on (X ,A ), u is µ-measurable if it isAµ-measurable.

Definition 1.8. We say that u : X →R is a µ-simple function if u is µ-measurable and the image of u

is finite, i.e. if u belongs to the vector space generated by the characteristic functions.

Definition 1.9 (Integrals). Let (X ,A ) be a measure space.

• Let µ a positive measure on (X ,A ) and u : X → [0,∞] a simple µ-measurable function. Then

the integral of u is defined by
∫

X
u dµ=

∑

z∈u(X )

zµ
�

u−1(z)
�

,

with the convention that, whenever z = 0 and µ(u−1(z)) =∞, the product zµ(u−1(z)) = 0.

The definition is extended to any µ-measurable function u : X → [0,∞] by setting:

∫

X
u dµ= sup

¨

∫

X
v dµ : v µ-measurable, simple, v ≤ u

«

.

• A µ-measurable map u : X →R is µ-summable if
∫

X
|u|dµ<∞.

A µ-measurable map u : X →R is µ-integrable if either
∫

X
u+ dµ<∞ or

∫

X
u− dµ<∞.

If u is µ-integrable, we set
∫

X
u dµ=

∫

X
u+ dµ−

∫

X
u− dµ.

• Let µ be a measure on (X ,A ) and u : X → R a |µ|-measurable function; we say that u is

µ-summable if u is |µ|-summable and, if µ is real, we set
∫

X
u dµ=

∫

X
u dµ+−

∫

X
u dµ−.

If µ is a Rm -valued vector measure then we set
∫

X
u dµ=

�∫

X
u dµ1, . . . ,

∫

X
u dµm

�

.
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If µ is real and u = (u1, . . . , uk) : X → Rk is a |µ|-measurable function, we say that u is |µ|-

summable if all its components are |µ|-summable, and we set
∫

X
u dµ=

�∫

X
u1 dµ, . . . ,

∫

X
uk dµ

�

.

• When A is a µ-measurable set, the integral of a function u on A is defined by
∫

A
u dµ=

∫

X
uχA dµ.

Remark 1.10. As immediate consequence the following inequality holds for every extended real or

vector valued summable function u and for every positive, real or vector measure µ:
�

�

�

�

�

∫

X
u dµ

�

�

�

�

�

≤
∫

X
|u|d|µ|.

Definition 1.11 (Lp space). Let (X ,A ) be a measure space, µ a positive measure on it and u : X →R

a µ-measurable function. We set

‖u‖p =















�∫

X
|u|p dµ

�
1
p

if 1≤ p <∞,

inf{C ∈ [0,∞] : |u(x)| ≤C for µ-a.e. x ∈X } if p =∞.

We say that u ∈ Lp(X ,µ) if ‖u‖p < ∞. The set Lp(X ,µ) is a real vector space and ‖ · ‖p is a

semi-norm.

Theorem 1.12 (Monotone convergence). Let uh : X →R be an increasing sequence of µ-measurable

functions, and assume that uh ≥ g , with g ∈ L1(X ,µ), for any h ∈N. Then

lim
h→∞

∫

X
uh dµ=

∫

X
lim

h→∞
uh dµ.

Lemma 1.13 (Fatou). Let uh : X →R be µ-measurable functions and g ∈ L1(X ,µ). Then

• if uh ≥ g for any h ∈N
∫

X
liminf

h→∞
uh dµ≤ liminf

h→∞

∫

X
uh dµ;

• if uh ≤ g for any h ∈N
∫

X
limsup

h→∞
uh dµ≥ limsup

h→∞

∫

X
uh dµ.

Theorem 1.14 (Dominated convergence). Let u, uh : X →R be µ-measurable functions, and assume

that uh (x)→ u(x) for µ-a.e. x ∈X as h→∞. If
∫

X
sup

h
|uh |dµ<∞

then

lim
h→∞

∫

X
uh dµ=

∫

X
u dµ.
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Proposition 1.15. Let µ be a positive measure on the measure space (X ,A ) and let u ∈ [L1(X ,µ)]m .

We define the Rm -valued measure

uµ(B) =
∫

B
u dµ, ∀B ∈A .

Moreover, if uµ is the measure introduced above, then

|uµ|(B) =
∫

B
|u|dµ, ∀B ∈A .

Definition 1.16 (Absolute continuity). Let µ be a positive measure and ν a real or vector measure on

the measure space (X ,A ). We say that ν is absolutely continuous with respect to µ, and write ν�µ, if

µ(B) = 0 =⇒ |ν |(B) = 0, ∀B ∈A .

Remark 1.17. If u is µ-summable, then the measure uµ is absolutely continuous with respect to µ.

Definition 1.18 (Singularity). If µ, ν are positive measures, we say that they are mutually singular,

and we write ν ⊥ µ, if there exists A∈A such that µ(A) = 0 and ν(X \A) = 0; if µ or ν are real or

vector valued, we say that they are mutually singular if |µ| and |ν | are so.

Definition 1.19 (Equi-integrability). IfF ⊂ L1(X ,µ) we say thatF is an equi-integrabile family if

the following two conditions hold:

• for any ε > 0 there exists a µ-measurable set A with µ(A)<∞ such that
∫

X \A
|u|dµ< ε, for any u ∈F ;

• for any ε > 0 there exists δ > 0 such that, for every µ-measurable set A, if µ(A)<δ then
∫

A
|u|dµ< ε, ∀u ∈F .

Proposition 1.20. LetF ⊂ L1(X ,µ). ThenF is equi-integrable if and only if

{Ah}h∈N ⊂A , Ah ↓ ; =⇒ lim
h→∞

sup
u∈F

∫

Ah

|u|dµ= 0.

If µ is a finite measure andF is bounded in L1(X ,µ), thenF is equi-integrable if and only if

F ⊂
¨

u ∈ L1(X ,µ) :
∫

X
ϕ(|u|)dµ≤ 1

«

for some increasing continuous function ϕ : [0,∞) → [0,∞] satisfying ϕ/t → ∞ as t → ∞ or

equivalently if and only if

lim
t→∞

sup
u∈F

∫

{|u|>t}
|u|dµ= 0.
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Theorem 1.21 (Radon-Nikodým). Let µ be a positive measure and ν a real or vector measure on the

measure space (X ,A ) and assume that ν is σ -finite. Then there is a unique pair of Rm -valued measures

νa , ν s such that νa�µ, ν s ⊥µ and ν = νa + ν s . Moreover, there is a unique function u ∈ [L1(X ,µ)]m ,

such that νa = uµ. The function u is called the density of ν with respect to µ and is denoted by ν/µ.

Theorem 1.22 (Fubini). Let (X1,A1), (X2,A2) be measure spaces andµ1, µ2 be positiveσ -finite measures

in X1, X2 respectively. Then there is a unique positive σ -finite measure µ on (X1× X2,A1×A2) such

that

µ(A1×A2) =µ(A1) ·µ(A2), ∀A1 ∈A1, ∀A2 ∈A2.

Furthermore, for any µ-measurable function u : X1×X2→ [0,∞] we have that

x 7−→
∫

X2

u(x, y)dµ2(y) and y 7−→
∫

X1

u(x, y)dµ1(x)

are respectively µ1-measurable and µ2-measurable and

∫

X1×X2

u dµ=
∫

X1

�

∫

X2

u(x, y)dµ2(y)
�

dµ1(x) =
∫

X2

�

∫

X1

u(x, y)dµ1(x)
�

dµ2(y).

1.2 Borel and Radon measure

Definition 1.23 (Borel σ -algebra). The Borel σ -algebra of X is the smallest σ -algebra of X containing

the open subsets of X .

Definition 1.24. Let X be a locally compact and separable metric space,B its Borel σ -algebra and

consider the measure space (X ,B(X )). Then

• a Borel measure is a positive measure on (X ,B(X )), i.e. every Borel set is µ-measurable;

• a Borel measure µ is regular if for every A⊂X there exists a Borel set B such that A⊂ B and

µ(A) =µ(B). Thus, a Borel measure is completely determined by its values on Borel sets;

• a positive Radon measure is a Borel measure locally finite, i.e. µ(K)<∞ with K compact sets;

• a (real or vector) set function defined on the relatively compact Borel subsets of X , that is a

measure on (K ,B(K)) for every compact set K ⊂X is called a (real or vector) Radon measure

on X . If µ :B(X )→Rn is a measure, we say that is a finite Radon measure.

Example 1.25. The Lebesgue measure on X and the Dirac measure δx at x ∈ X are well-known

examples of Radon measure on Rn .

Definition 1.26 (Borel functions). Let X , Y be metric spaces, and let u : X → Y . We say that u is a

Borel function if u−1(A) ∈B(X ) for every open set A⊂ Y .
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Theorem 1.27 (Inner and outer regularity of measures). Let X a locally compact and separable metric

space and µ a Borel measure on X . Let A a µ-measurable set. Then

• if µ is σ -finite, then µ(A) = sup{µ(K) : K ⊂A, K compact};

• assume that a sequence {Xh}h∈N of open sets in X exists such that µ(Xh) < ∞ for any h and

X =
⋃

h∈NXh ; then µ(A) = inf{µ(E) : E ⊂A, A open}.

Theorem 1.28 (Lusin). Let X be a locally compact and separable metric space and µ a Borel measure on

X . Let u : X →R be a µ-measurable function vanishing outside of a set with finite measure. Then, for

any ε > 0 there exists a continuous function v : X →R such that

• ‖v‖∞ < ‖u‖∞;

• µ({x ∈X : v(x) 6= u(x)})< ε.

Remark 1.29. If µ is a finite Borel measure on X , an easy consequence is that for any µ-measurable

function u : X →R there exists a sequence {Kh}h∈N of compact sets in X such that

µ

 

X \
∞
⋃

h=0

Kh

!

= 0,

and u|Kh
is continuous for every h.

Proposition 1.30. Let X be a locally compact and separable metric space andµ a finiteRm -valued Radon

measure on it. Then for every open set A⊂X the following equality holds:

|µ|(A) = sup

¨ m
∑

i=1

∫

X
ui dµi : u ∈ [Cc (A)]

m , ‖u‖∞ ≤ 1

«

.

1.3 Outer measure

Definition 1.31 (Outer measure). Let X a metric space andP (X ) the collection of all the subset of

X . A mapping µ :P (X )→ [0,∞] is called an outer measure on X if µ(;) = 0, µ is σ -subadditivity

and

dist(A, F )> 0 =⇒ µ(A∪ F ) =µ(A)+µ(F ), for any A, F ⊂X .

Remark 1.32. The Lebesgue measure of a set A∈Rn is an outer measure and it is definied as

L n(A) = inf
A

∑

Q∈A
r (Q)n ,

whereA is a countable covering of A by cubes with sides parallel to the coordinate axis, and r (Q)

denotes the side length ofQ. This measure is usually interpreted as the n-dimensional volume of A

and we writeL n(A) = |A|, with |A|= volume of A.
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Remark 1.33. The Hausdorff measure (Section 1.6) is an outer measure.

Definition 1.34. Let µ be an outer measure on X and A⊂X . Then µ restricted to A, written µ ¬A,

is the measure defined by

(µ ¬A)(B) =µ(A∩B), ∀B ⊂X .

Remark 1.35. If A is a Borel set, then µ ¬A is a Borel regular measure, even if µ(A) =∞.

Theorem 1.36. Letµ be a Borel regular measure onRn . Suppose A⊂Rn isµ-measurable andµ(A)<∞.

Then µ ¬A is a Radon measure. So we can generate a Radon measure by restricting µ to a measurable set

of finite measure.

Theorem 1.37 (Carathéodory criterion). Let µ be an outer measure on the metric space X ; then µ is

σ -additive onB(X ), hence the restriction of µ to Borel sets of X is a positive measure.

Remark 1.38. The Carathéodory criterion shows that an outer measure always defines a Borel

measure, so a Lebesgue measure is a Borel measure; conversely, if µ is a Borel measure on X , then it

can be extended to every A⊂X by setting

µ(A) = inf{µ(B) : B ∈B(X ),B ⊃A}.

Moreover, if µ is an outer measure on X and A⊂ B ⊂X , then µ(A)≤µ(B).

Theorem 1.39 (Carathéodory’s Theorem). If µ is an outer measure on X andM (µ) is the family for

those A⊂X such that

µ(B) =µ(B ∩A)+µ(B \A), ∀B ⊂X ,

thenM (µ) is a σ -algebra, and µ a measure onM (µ). Elements ofM (µ) are called µ-measurable sets.

Theorem 1.39 states that every outer measure on X can be seen as a measure on a σ -algebra on X .

In this way, various classical results from Measure Theory are immediately recovered in the context of

outer measure.

1.4 Riesz Theorem and weak-∗ convergence in measure

Definition 1.40 (Support). Let µ be a positive measure on the locally compact and separable metric

space X . We call the closed set of all points x ∈X , such that µ(A)> 0, for any neighbourhood A of x,

the support of µ and we denote it by suppµ. If µ is a real or vector measure, we call the support of µ,

the support of |µ|.

In the following, we will denote by C 0
c (X ) the space of continuous functions with compact support

and by C0(X ) its completion with respect to the sup-norm.
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Definition 1.41 (Total Variation). The total variation of a linear functional L on C 0
c (Rn ;Rm) is the

set function |L| :P (Rn)→ [0,∞] such that, for A⊂Rn open,

|L|(A) = sup
n

〈L,ϕ〉 : ϕ ∈C 0
c (A;Rm), |ϕ| ≤ 1

o

,

and, for E ⊂Rn arbitrary,

|L|(E) = inf
n

|L|(A) : E ⊂A and A is open
o

.

Theorem 1.42 (Riesz). Let X be a locally compact and separable metric space; suppose that the functional

L : [C0(X )]
m→R is additive and bounded, i.e. satisfies the following conditions:

• L(u + v) = L(u)+ L(v) for any u, v ∈ [C0(X )]
m ;

• ‖L‖= sup{L(u) : u ∈ [C0(X )]
m , |u| ≤ 1}<∞.

Then, there is a unique Rm -valued finite Radon measure µ on X such that

L(u) =
m
∑

h=1

∫

X
uh dµh , ∀u ∈ [C0(X )]

m ,

and ‖L‖= |µ|(X ), a Radon measure.

Example 1.43 (Riemann integral). Let X =R and L : C 0
c (R)→R the linear functional which assigns

to u ∈C 0
c (R) its Riemann integral; according to Riesz Theorem, L defines a measure on R. This is a

way to construct the Lebesgue measure.

Remark 1.44. From the Riesz Theorem, the space of Radon measure on Rn is identified with the

dual space of C 0
c (Rn). So, the Riesz Theorem can be restated by saying that the dual of the Banach

space [C0(X )]
m is the space [M (X )]m of finite Rm -valued Radon measures on X , under the pairing

(u,µ) =
m
∑

h=1

∫

X
uh dµh .

Proposition 1.45 (Convergence in measure). Let uh and u be µ-measurable functions. We say that

{uh}h∈N converges to u in measure if

lim
h→∞

µ({x ∈X : |uh (x)− u(x)|> ε}) = 0, ∀ε > 0.

Definition 1.46 (Weak-∗ convergence). Let µ ∈ [Mloc(X )]
m and let {µh}h∈N ⊂ [Mloc(X )]

m ; we say

that {µh}h∈N locally weak-∗ converges to µ if

lim
h→∞

∫

X
u dµh =

∫

X
u dµ, for every u ∈Cc (X );

if µ and µh are finite, we say that {µh}h∈N weak-∗ converges to µ if

lim
h→∞

∫

X
u dµh =

∫

X
u dµ, for every u ∈C0(X ).
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Theorem 1.47 (Weak-∗ compactness). If {µh}h∈N is a sequence of finite Radon measures on the locally

compact and separable metric space X with sup{|µh |(X ) : h ∈N}<∞, then it has a weakly-∗ converging

subsequence and the map µ→ |µ|(X ) is lower semicontinuous with respect to the weak-∗ convergence.

Proposition 1.48. Let {µh}h∈N be a sequence of Radon measures on the locally compact and separable

metric space X locally weakly-∗ converging to µ. Then

• if the measures µh are positive, then for every lower semicontinuous function u : X → [0,∞]

liminf
h→∞

∫

X
u dµh ≥

∫

X
u dµ

and for every upper semicontinuous function v : X → [0,∞) with compact support

limsup
h→∞

∫

X
v dµh ≤

∫

X
v dµ;

• if |µh | locally weakly-∗ converges to λ, then λ ≥ |µ|. Moreover, if A is a relatively compact µ-

measurable set such that λ(∂ A) = 0, then µh (A)→µ(A) as h→∞. More generally
∫

X
u dµ= lim

h→∞

∫

X
u dµh

for any bounded Borel function u : X →R with compact support such that the set of its discontinuity

points is λ-negligible.

Example 1.49. Considering the characteristic function of compact and open sets. From Proposition

1.48 we have, whenever {µh}h∈N is locally weak-∗ convergent to µ,

• µ(K)≥ limsuph µh (K) if K compact;

• µ(A)≤ liminfh µh (A) if A open.

Proposition 1.50. Let (X ,A ) be a measure space, µ a positive measure on it and u : X → [0,∞] a

µ-measurable function. Then
∫

X
u dµ=

∫ ∞

0
µ{x ∈X : u(x)> t}dt .

Proof. If {u > 0} is not σ -finite with respect toµ, then both sides are∞; otherwise, possibly replacing

µ byµ ¬ {u > 0}, we can assume thatµ is a σ -finite measure. We apply Fubini’s Theorem in X×(0,∞)

with µ1 =µ and µ2 =L 1, the Lebesgue measure on real line. Let

Et = {x ∈X : u(x)> t},

then we have
∫

X
u dµ=

∫

X

�∫ ∞

0
χEt
(x)dt

�

dµ(x) =
∫ ∞

0

�∫

X
χEt
(x)dµ(x)

�

dt =
∫ ∞

0
µ(Et )dt .
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Proposition 1.51. Let {µh}h∈N be a sequence of positive Radon measures on X , and assume the existence

of a positive, finite Radon measure µ in X such that

lim
h→∞

µh (X ) =µ(X ) and liminf
h→∞

µh (A)≥µ(A)

for every A⊂X open. Then

lim
h→∞

∫

X
u dµh =

∫

X
u dµ

for any bounded continuous function u : X →R. In particular {µh}h∈N weakly-∗ converges to µ in X .

1.5 Differentiation of a measure

Definition 1.52. For positive Radon measures µ, ν and x ∈ suppµ we define the following Borel

functions:

D+µ ν(x) = limsup
ρ→0

ν(B(x,ρ))
µ(B(x,ρ))

and D−µ ν(x) = liminf
ρ→0

ν(B(x,ρ))
µ(B(x,ρ))

.

Remark 1.53. Since open balls can be approximated from inside by closed balls and closed balls can

be approximated from outside by open balls, the densities D±µ do not change if we replace open balls

by closed balls.

Proposition 1.54. Let µ and ν be positive Radon measures in Rn and let t ∈ [0,∞). For any Borel set

A⊂ suppµ the following two implications hold:

D−µ ν(x)≤ t , ∀x ∈A =⇒ ν(A)≤ tµ(A),

D+µ ν(x)≥ t , ∀x ∈A =⇒ ν(A)≥ tµ(A).

In particular, if ν is finite then µ({x : D+µ (x) =∞}) = 0.

Theorem 1.55 (Bezicovič derivation theorem). Let µ a positive Radon measure in an open set Ω⊂Rn ,

and ν an Rm -valued Radon measure. Then, for µ-a.e. x in the support of µ the limit

u(x) = lim
ρ→0

ν(B(x,ρ))
µ(B(x,ρ))

exists in Rm and moreover the Radon-Nykodým decomposition of ν is given by ν = uµ+ ν s , where

ν s = ν ¬A and A is the µ-negligible set

A= (Ω \ suppµ)∪
¨

x ∈ suppµ : lim
ρ→0

|ν |(B(x,ρ))
µ(B(x,ρ))

=∞
«

.

Remark 1.56. Theorem 1.55 gives a concrete representation of the density ν/µ.

Corollary 1.57 (Lebesgue points). Let µ be a positive Radon measure in an open set Ω ⊂ Rn and

u ∈ L1(Ω,µ). Then for µ-a.e. x ∈Ω the following equality holds:

lim
ρ→0+

1
µ(B(x,ρ))

∫

B(x,ρ)
|u(y)− u(x)|dµ= 0.

In this case, we say that x is a Lebesgue point of u with respect to µ.
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1.6 Hausdorff Measure

The Hausdorff dimension was firstly introduced in 1918 by Felix Hausdorff, and then exploited by

Abram Bezicovič: that’s why it is also called the Hausdorff-Besicovǐc dimension. Roughly speaking, the

dimension of a set is the number of indipendent parameters necessary to describe a point in the set. For

example, a point in a plane is described by two Cartesian Coordinates (so the plane is bidimensional).

We can construct strange sets in a plane for which the dimension is lower: the most famous set is

the Sierpinski triangle whose dimension is ln(3)/ ln(2). The Hausdorff dimension is the right tool to

calculate this dimension, which is a real number and it is strictly connected with fractal dimension,

investigated by Benoît Mandelbrot.

Definition 1.58 (Fractal dimension). Given an unitary object with linear dimension equal to 1 in the

Euclidean dimension D , we can reduce the linear dimension by a factor 1/l in every spatial direction

obtaining N = l D similar objects which can be used to rebuild the original object. So the fractal

dimension is defined by

D =
logN (l )

log l
.

Figure 1: The Sierpinski triangle formation process. In this case a line in linear dimension equal to 1 is

reduced by a factor 1/2 in every direction. So l = 2 and we obtain N = 3 similar object.

From now on we restrict our consideration to Rn remembering that by the Whitney extension

theorem a lot of cases can be reconducted to this one: if A is a closed subset of an Euclidean space, then

it is possible to extend a given function off A in such a way as to have prescribed derivatives at the

points of A.

Definition 1.59. (Hausdorff measure) Let k ∈ [0,+∞) and A⊂Rn . The k-dimensional Hausdorff

measure of A is given by

H k (A) = lim
δ→0+

H k
δ (A)

where, for 0<δ <∞,H k
δ
(A) is the outer measure defined by

H k
δ (A) =

ωk

2k
inf

¨

∑

i∈I

[diam(Ai )]
k : diam(Ai )<δ, A⊂

⋃

i∈I

Ai

«

for finite or countable covers {Ai}i∈I , with ωk
2k as normalization factor and the convention diam(;) = 0.
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Figure 2: Graphic example ofH k
δ
(A), where A is the blue curve. Covering with smaller sets is needed

to compute the length where the curvature is higher: this follows the local geometry of A.

Remark 1.60. We defineωk as

ωk =
π

k
2

Γ
�

1+ k
2

� , where Γ (t ) =
∫ ∞

0
s t−1e−s ds is the Euler Γ function.

Definition 1.61 (Curve). A set Γ ⊂ Rn is a curve if there exist a > 0 and a continuous injective

function γ : [0,a]→Rn such that Γ = γ ([0,a]). In this case, γ is called a parametrization of Γ . Given a

parametrization γ : [0,a]→Rn and a subinterval [b , c] of [0,a], we define the length of γ over [b , c]

as

`(γ ; [b , c]) = sup
n n
∑

h=1

|γ (th )− γ (th−1)| : b = t0 < th−1 < th < tn = c , n ∈N
o

.

So the length of Γ is length(Γ ) = `(γ ; [0,a]) and it is independent of the parametrization γ of Γ .

Definition 1.62 (Hausdorff dimension). The Hausdorff dimension of A∈Rn is given by:

Hdim(A) = inf
n

k ≥ 0 :H k (A) = 0
o

.

The notion of dimension is justified by the following statements:

• if A⊂Rn , thenHdim(A) = [0, n]. MoreoverH k (A) =∞ for every k <Hdim(A);

• H 0 is the counting measure;

• if A is a curve, thenH 1(A) coincides with the classical length of A;

• if 1≤ k ≤ n− 1, k ∈N, and A is a k-dimensional C 1 surface, thenH k(A) coincides with the

classical k-dimensional area of A;

• if A∈Rn , thenH n(A) =L n(A);

• if k > n, thenH k = 0;

• if A is an open set in Rn , thenHdim(A) = n;

• for every k ∈ [0, n] there exists a compact set K such thatHdim(K) = k.
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Theorem 1.63 (Isodiametric inequality). Among all sets of fixed diameter, balls have maximum volume.

In other words,

L n(A)≤ωn

�diam(A)
2

�n

,

for anyL n -measurable set A⊂Rn .

Theorem 1.64. The measuresL n ,H n andH n
δ

coincides in Rn so, for any Borel set A⊂ Rn and an

δ ∈ (0,∞], there holds

L n(A) =H n
δ (A) =H

n(A).

1.7 Topology convergence

Definition 1.65 (Strong convergence). A sequence {xh}h∈N in A converges strongly to x ∈A, and we

write xh → x, if

‖xh − x‖→ 0.

Definition 1.66 (Weak convergence). The weak topology σ(A, A∗) on A is the coarsest topology on

A (i.e. with the minimum number of open sets) such that all the elements in A∗ are continuous. If a

sequence {xh}h∈N in A converges to x ∈A in the weak topology σ(A, A∗) we shall write xh −* x, i.e.

〈ϕ, xh〉A∗,A→〈ϕ, x〉 in R, ∀ϕ ∈A∗.

Proposition 1.67. When A is finite-dimensional, the weak topology σ(A, A∗) and the usual topology are

the same. In particular, a sequence {xh}h∈N converges weakly if and only if it converges strongly.

So far, we have two topologies on A∗:

• the usual (strong) topology associated to the norm of A∗,

• the weak topology σ(A∗, A∗∗).

We are now going to define a third topology on A∗ called the weak-∗ topology and denoted by σ(A∗, A)

(the ∗ is to reminds us that this topology is defined only on dual spaces).

Definition 1.68 (Weak-∗ convergence). The weak-∗ topology σ(A∗,A) on A∗ is the smallest topology

in which all the function of the set JA= {J x : x ∈A} are continuous. Since JA⊆A∗∗, such topology

is weaker than the weak topology σ(A∗,A∗∗) in which all the functions of A∗∗ are continuous. Let

{ϕh}h∈N a sequence in A∗, ϕ ∈ A∗ and x ∈ A, then {ϕh}h∈N converges to ϕ in the weak-∗ topology,

and we write ϕh
∗−*ϕ, if and only if

〈ϕh , x〉A∗,A→〈ϕ, x〉A∗,A , for all x ∈A.
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Since A⊂A∗∗, it is clear that the topology σ(A∗, A) has fewer open sets than the topology σ(A∗, A∗∗),

which in turn has fewer open sets than the strong topology. Obviously, a coarser topology has more

compact sets.

Proposition 1.69. When A is finite-dimensional, the weak-topology σ(A, A∗) and the usual topology are

the same. In particular, a sequence {xh}h∈N converges weakly if and only if it converges strongly.

Theorem 1.70. Let C be a convex subset of A. Then, C is closed in the weak topology σ(A, A∗) if and

only if it is closed in the strong topology.

Theorem 1.71 (Mazur). Assume {xh}h∈N converges weakly to x. Then there exists a sequence {yh}h∈N
made up of convex combinations of the xh ’s that converges strongly to x.

Theorem 1.72. Assume that u : A→ (−∞,+∞) is convex and l.s.c. in the strong topology. Then ϕ is

l.s.c. in the weak topology σ(A, A∗).

Proposition 1.73. The weak-∗ topology is Hausdorff.

Ennio De Giorgi introduced Γ -convergence to minimize the functional F (u), whenever it is singular

and also its approximates are difficult to minimize.

Definition 1.74. Let X be a topological space and {Fh}h∈N : X → [0,+∞) a sequence of functionals

on X . Then {Fh}h∈N is said to Γ -converge to the Γ -limit F : X → [0,+∞) if the following two

conditions hold:

• Lower bound inequality: For every sequence {xh}h∈N ∈X such that xh → x as h→∞,

F (x)≤ liminf
h→∞

Fh (xh ).

• Upper bound inequality: For every x ∈X , there is a sequence {xh}h∈N converging to x such that

F (x)≥ limsup
h→∞

Fh (xh )

The first condition means that F provides an asymptotic common lower bound for the Fh . The

second condition means that this lower bound is optimal.

Property 1.75. The following properties holds:

• Minimizers converge to minimizers: If {Fh}h∈N Γ -converge to F , and xh is a minimizer for

{Fh}h∈N, then every cluster point of the sequence {xh}h∈N is a minimizer of F .

• Γ -limits are always lower semicontinuous.

• Γ -convergence is stable under continuous perturbations: If {Fh}h∈N Γ -converges to F and

G : X → [0,+∞) is continuous, then Fh +G will Γ -converge to F +G.

• A constant sequence of functionals Fh = F does not necessarily Γ -converge to F , but to the

relaxation of F , the largest lower semicontinuous functional below F .
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1.8 Sobolev spaces

Definition 1.76 (Weak derivatives). Let Ω⊂Rn be an open set, and let i ∈ {1, . . . ,N}, u ∈ L1
loc(Ω); if

there exists g ∈ L1
loc(Ω) such that

∫

Ω
u
∂ ϕ

∂ xi

dx =−
∫

Ω
gϕ dx, ∀ϕ ∈C∞c (Ω)

then we say that u has weak i -th derivative given by g . This is unique and denoted by∇i u or ∂ u/∂ xi .

Remark 1.77. The weak derivatives coincide with the classical ones if u ∈C 1(Ω).

Definition 1.78 (Sobolev spaces). LetΩ⊂Rn be an open set, and 1≤ p ≤∞; we say that u ∈W1, p (Ω)

if u ∈ Lp (Ω) and has weak derivatives in Lp (Ω) for every i = 1, . . . , n. For any u ∈W1, p (Ω) we set

∇ u = (∇1 u, . . . ,∇n u).

We recall that W1, p(Ω) becomes a Banach space (Hilbert for p = 2) when endowed with the norm

‖ · ‖W1, p (Ω) defined by

‖u‖W1, p (Ω) =























�

‖u‖p
p +

n
∑

i=1

‖∇i u‖p
p

�
1
p

if 1≤ p <∞;

‖u‖∞+
n
∑

i=1

‖∇i u‖∞ if p =∞.

Remark 1.79. The space W1, p (Ω) is separable for 1≤ p <∞ and reflexive for 1< p <∞.

Proposition 1.80. Let Ω ⊂ Rn be open, and {uh}h∈N a sequence in W1, p(Ω) converging in Lp(Ω) to

some function u; then the following statements hold:

• if 1 ≤ p ≤∞, and for every i ∈ {1, . . . , n} there is gi ∈ Lp(Ω) such that ∇i uh → gi in Lp(Ω),

then u ∈W1, p (Ω) and gi =∇i u;

• if 1< p ≤∞ and the sequences {∇i uh}h∈N are bounded for any i = 1, . . . , n, then u ∈W1, p(Ω)

and∇i uh →∇i u weakly (weakly-∗ if p =∞) for any i = 1, . . . , n.

Definition 1.81. We denote by W1,p
0 (Ω) the closure of C∞c (Ω) in W1, p (Ω).

Theorem 1.82. Let I ⊂R be a bounded interval, 1≤ p ≤∞, and let u ∈W1, p (I ); then there is a unique

function eu ∈C (I ) such that eu(x) = u(x) forL 1-a.e. x ∈ I and

eu(b )− eu(a) =
∫ b

a
u ′(x)dx, ∀a, b ∈ I .
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Definition 1.83 (Weak convergence in W1, p ). LetΩ⊂Rn , 1≤ p ≤∞ and u, uh ∈W1, p (Ω); then, we

say that uh → u weakly in W1, p (Ω) (weakly-∗ if p =∞) if∇ uh weakly converge in Lp (Ω) (weakly-∗

if p =∞) and uh → u strongly in Lp (Ω).

Definition 1.84 (Higher order Sobolev spaces). Higher order weak derivatives∇α u (with α multi-

index) can be introduced, giving rise to the spaces Wk , p . If u ∈ L1
loc(Ω) we say that g ∈ L1

loc(Ω) is the

α-th weak derivative of u if
∫

Ω
u∇αϕ dx = (−1)|α|

∫

Ω
gϕ dx, ∀ϕ ∈C∞c (Ω).

Given an integer k > 1 and 1≤ p ≤∞ the Sobolev space Wk , p (Ω) is thus defined as the set of functions

u ∈ Lp(Ω) such that all weak derivatives ∇α u belong to Lp(Ω) for any |α| ≤ k. It can be endowed

with a norm,

‖u‖Wk , p (Ω) =



























 

‖u‖p
p +

n
∑

i=1

∑

|α|=i

‖∇α u‖p
p

!
1
p

if 1≤ p <∞;

‖u‖Wk ,∞(Ω) = ‖u‖∞+
n
∑

i=1

∑

|α|=i

‖∇α u‖∞ if p =∞.

1.9 Lipschitz functions

We recall some basic results on Lipschitz functions, which are more flexible than C 1 functions, and

provide useful properties arising from their sufficient degree of regularity.

Definition 1.85 (Lipschitz functions). Let A⊂Rn and u : A→Rn . Then u is a Lipschitz function in

A and we write u ∈ [Lip(A)]n if

Lip(u,A)≡ sup

¨

|u(x)− u(y)|
|x − y|

: x 6= y and x, y ∈A

«

<∞.

By definition, Lip(u,A) is the least L ∈ [0,∞) such that

|u(x)− u(y)| ≤ L|x − y|, ∀x, y ∈Rn .

Proposition 1.86. Let A⊂Rn and let u : A→R be a Lipschitz function; then there is eu :Rn→R such

that eu(x) = u(x) for any x ∈A and Lip(eu, Rn) = Lip(u, A).

Remark 1.87. Since the Lipschitz property is preserved under mollification, any Lipschitz function u :

Ω→R belongs to W1,∞(Ω) and satisfies ‖∇ u‖L∞(Ω) ≤ Lip(u, Ω). In general, however, u ∈W1,∞(Ω)

does not imply u ∈ Lip(Ω) because it may happen that ‖∇ u‖L∞(Ω) < Lip(u, Ω). The next proposition

provides a sufficient condition ensuring the equality.
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Proposition 1.88. Let Ω⊂Rn be a bounded, convex, open set, and u : Ω→R. Then u ∈W1,∞(Ω) if

and only if Lip(u, Ω)<∞ and ‖∇ u‖L∞(Ω) = Lip(u, Ω).

Proposition 1.89 (Weak gradient of a Lipschitz function). If u :Rn→Rm is a Lipschitz function, then

u ∈ L∞loc(R
n ;Rm) and u admits a weak gradient∇ u ∈ L∞(Rn ;Rm ⊗Rn).

Theorem 1.90 (Rademacher’s theorem). Any function u ∈W1,∞(Ω) is differentiableL n -a.e. in Ω and

the differential coincidesL n -a.e. with the weak derivative∇ u in Definition 1.85.

Theorem 1.91. Let u :Rn→Rm be Lipschitz, A⊂Rn , 0≤ k <∞. Then

H k (u(A))≤ [Lip(u)]kH k (A).

In particular,Hdim(u(A)) ≤Hdim(A), so the Hausdoorf measure decrease under projection over affine

subspace of Rn .

Lipschitz functions in Calculus of Variation

Let I = [a, b ]⊂R an interval of R and L : I ×Rn ×Rn→R a function. We denote the variables of L

with (t , x, v) where t ∈ I , x ∈Rn and v ∈Rn . Let X a vectorial subspace of the space of functions

defined on I with values in Rn , a.e. differentiable. We consider the following problem, called basic

problem of Calculus of Variation:

inf
x( · )∈X

J (x), J (x) =
∫

I
L(t , x(t ), ẋ(t ))dt

Theorem 1.92 (Euler’s equations). Given the basic problem of Calculus of Variation, with X =C 2(I ;Rn)

and L ∈C 2, if x( · ) is a solution, then it satisfy the Euler’s equations:






























































d
dt
∂ L
∂ v1

(t , x(t ), ẋ(t )) =
∂ L
∂ x1

(t , x(t ), ẋ(t )),

...
d
dt
∂ L
∂ v j

(t , x(t ), ẋ(t )) =
∂ L
∂ x j

(t , x(t ), ẋ(t )), j = 2, . . . , n− 1,

...
d
dt

∂ L
∂ vn
(t , x(t ), ẋ(t )) =

∂ L
∂ xn
(t , x(t ), ẋ(t )).

Definition 1.93 (Fréchet derivative). Let X , Y normed spaces and Ω an open set in X . A function

u :Ω→ Y is Fréchet-differentiable at x0 ∈Ω (or F -differentiable at x0) if it exists a linear and continuous

operator A : X → Y , such that:

lim
‖h‖X→0

u(x0+ h)− u(x0)−Ah
‖h‖X

= 0.

In this case, A is unique and is the Fréchet derivative of u at x0, written as A= u ′(x0) =D u(x0).
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Definition 1.94 (Gâteaux derivative). Let X , Y normed spaces and Ω an open set in X . A function

u : Ω → Y is Gâteaux-differentiable at x0 ∈ Ω (or G-differentiable at x0) if it exists a linear and

continuous operator A : X → Y , such that:

lim
t→0

u(x0+ h)− u(x0)
t

=Av.

In this case, A, if exists, is unique and it is the Gâteaux differential of u at x0, written as A= u ′G(x0).

The application x 7−→ u ′G(x) is the Gâteaux derivative of u.

Remark 1.95. There exist functions G-differential at x0 which are not F -differential at x0. However,

if a function is F -differential at x0, it is also G-differential at x0 and u ′(x0) = u ′G(x0).

Definition 1.96 (Functions absolutely continuous). A function u is absolutely continuous in [a, b ],

written u ∈AC([a,b]) if there exist v ∈ L1([a, b ]) such that

u(t ) = u(a)+
∫ t

a
v(s)ds , ∀t ∈ [a, b ].

The following relation holds:

W1,1([a, b ]) =AC([a,b])⊃ Lip([a,b]).

Proposition 1.97. Given the Euler’s equations in integral form

∇v L(t , x(t ), ẋ(t )) = c +
∫ t

a
∇x L(s , x(s), ẋ(s))ds ,

if (x, v) 7−→ L(t , x, v) is convex, then every weak extremal is a global minimum. If the map is strictly

convex, the minimum is unique.

Proposition 1.98. Given the basic problem of Calculus of Variation on X = Lip(Ω), if L(t , x, · ) ∈C 1

is strictly convex, then the infimum is x ∈C 1.

Theorem 1.99 (Hilbert-Weierstraß). Let L ∈C 2, ∂ 2
v,v L> 0 globally. Then every Lipschitz solution x is

such that x ∈C 2. If L ∈C r , r > 2 then the solution x ∈C r .

Theorem 1.100 (Tonelli). Given the basic problem of Calculus of Variation on X =AC([a,b]) with L

continuous, v 7−→ L(t , x, v) convex and such that there exist α > 0, β ∈R, p > 1 for which L(t , x, v)≥

α|v |p +β. Then the problem admits a solution x ∈AC([a,b]).

Theorem 1.101 (Clarke-Vinter (1985)). Under the hypothesis of Theorem 1.100, if L doesn’t depend from

t , then all the solutions of the basic problem of Calculus of Variation are Lipschitz.
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Definition 1.102. The following functional, with the boundary conditions x(a) = xa and x(b ) = xb ,

J (x) =
∫ b

a
L(t , x(t ), ẋ(t ))dt

exhibits the Laurent’ev phenomenon if

inf
x∈AC([a,b])

J (x)< inf
x∈Lip([a,b])

J (x).

Remark 1.103. In the presence of Laurent’ev phenomenon, the usual finite elements numerical

methods, setted in W1,∞(X ) = Lip(X) and used to minimize the basic problem of Calculus of Variation,

can’t reach the minimum.

1.10 Rectifiable Sets

Definition 1.104 (Rectifiable sets). Let A⊂Rn be aH k -measurable set. We say that A is countable

k-rectifiable if there exist countably many Lipschitz functions ui :Rk →Rn such that

A⊂
∞
⋃

i=0

ui (R
k ).

We say that A is countably H k -rectifiable if there exist countably many Lipschitz functions ui :

Rk → Rn such that

H k

�

A\
∞
⋃

i=0

ui (R
k )
�

= 0.

Finally, we say that A isH k -rectifiable if A is countablyH k -rectifiable andH k (A)<∞.

Remark 1.105. For k = 0 countably k-rectifiable and countablyH k -rectifiable sets correspond to

finite or countable sets, whileH k -rectifiable sets correspond to finite sets. Moreover, rectifiable sets

are stable under Lipschitz transformations.

Definition 1.106 (Rectifiable measures). Let µ be a Rm -valued Radon measure in Rn . We say that µ

is k-rectifiable if there exist a countablyH k -rectifiable set S and a Borel function θ : S → Rm such

that µ= θH k ¬ S.

The notion of locallyH k -rectifiable set is the most important to us. Indeed, whenever A is countably

H k -rectifiable set, theH k ¬A is a regular Borel measure. However,H k ¬A is a Radon measure if

and only if A is locallyH k -rectifiable. Therefore, is under the assumption of localH k -rectifiability

on A that we have a natural identification between A and a Radon measure µ.

Example 1.107. Let Γ be a smooth curve in Rn , that is Γ = γ ((a, b )) for γ : (a, b )→ Rn smooth

and injective. Given t0 ∈ (a, b ), the tangent space to Γ at x0 = γ (t0) is the line π= {sγ ′(t0) : s ∈R}.
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Consider now Γ as a Radon measure, looking atH 1 ¬ Γ , and define the blow-ups µx0,ρ of µ at x0,

setting

µx0,ρ =
1
ρ
(Φx0,ρ)#(H

1 ¬ Γ ) =H 1 ¬
�

Γ − x0

ρ

�

,

with Φx0,ρ(y) = (y − x0)/ρ, y ∈Rn . The fact that π is the tanget space to Γ at x0 implies that

µx0,ρ
∗−*H 1 ¬π, as ρ→ 0+.

Indeed, if ϕ ∈C 0
c (Rn), from the push-foward of a Radon measure with f :Rm→Rn continuous and

proper and a Borel measurable function u :Rm→ [0,∞]
∫

Rm
u d( f#µ) =

∫

Rn
(u ◦ f )dµ,

we find that
∫

Rn
ϕ dµx0,ρ =

1
ρ

∫

Γ
ϕ

�

y − x0

ρ

�

dH 1(y) =
1
ρ

∫ b

a
ϕ

�

γ (t )− γ (t0)
ρ

�

|γ ′(t )|dt

=
∫ (b−t0)/ρ

−(t0−a)/ρ
ϕ

�

γ (t0+ρs)− γ (t0)
ρ

�

|γ ′(t0+ρs)|ds ,

and

lim
ρ→0+

∫

Rn
ϕ dµx0,ρ =

∫

R
ϕ
�

sγ ′(t0)
�

|γ ′(t0)|ds =
∫

π
ϕ dH 1.

Hence, if A is locally H k -rectifiable and µ = H k ¬A, then for H k -a.e. x ∈ A there exists a k-

dimensional plane πx in Rn such that the blow-ups µx,ρ of µ at x weak-∗ converge toH k ¬πx as

ρ→ 0+, that is

H k ¬
�

A− x
ρ

�

∗−*H k ¬πx , as ρ→ 0+.

Also the converse is also true: if µ is a Radon measure on Rn concentrated on a Borel set A and such

that for every x ∈A there exists a k-dimensional plane πx , such that the k-dimensional blow-ups of µ

have the property that

µx,ρ =
(ϕx,ρ)#µ

ρk

∗−*H k ¬πx , as ρ→ 0+,

then A is locallyH k -rectifiable and µ=H k ¬A. The decomposition of rectifiable sets in Definition

1.104 allows us to prove the existence (in a measure-theoretic sense) of tangent space to rectifiable sets.

Define Φx,ρ : Rn → Rn as Φx,ρ(y) = (y − x)/ρ, y ∈ Rn , so that, if µ is a Radon measure on Rn and

A⊂Rn is Borel set, then
(Φx,ρ)#µ(A)

ρk
=
µ(x +ρA)

ρk
.

Theorem 1.108 (Existence of approximate tangent space). If A⊂ Rn is a locallyH k -rectifiable set,

then forH k -a.e. x ∈A there exists a unique k-dimensional plane πx such that, as ρ→ 0+,

(Φx,ρ)#(H k ¬A)
ρk

=H k ¬
�

A− x
ρ

�

∗−*H k ¬πx , (1.1)
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that is

lim
ρ→0+

1
ρk

∫

A
ϕ

�

y − x
ρ

�

dH k (y) =
∫

πx

ϕ dH k , ∀ϕ ∈C 0
c (R

n).

In particular, θk (H k ¬A) = 1H k -a.e. on A as

lim
ρ→0+

H k (A∩B(x,ρ))
ωkρk

= 1, forH k -a.e. x ∈A.

Remark 1.109. If a k-dimensional plane πx satisfies Equation (1.1), then we set πx = TxA and name

it the approximate tangent space to A at x. The set of points x ∈A such that Equation (1.1) holds true

depends only on the Radon measure µ=H k ¬A. It is a locallyH k -rectifiable set in Rn , which is left

unchanged if we modify A on and byH k -null sets.

Lemma 1.110. If A= u(E) is a k-dimensional regular Lipschitz image in Rn and z ∈ E, then

TxA=∇ u(z)(Rk ), x = u(z).

Proposition 1.111 (Locality of approximate tangent spaces). If A1 and A2 are locallyH k -rectifiable

sets in Rn , then forH k -a.e. x ∈A1 ∩A2,

TxA1 = TxA2.

Example 1.112 (Tangent space to a graph). If u : Rn−1→ R is a Lipschitz function, and we define

f :Rn−1→Rn as f (z) = (z, u(z)), z ∈Rn−1, then Γ = f (Rn−1) is locallyH n−1-rectifiable and, for

a.e. z ∈Rn−1,

T f (x)Γ = ν(z)
⊥, ν(z) = (∇′ u(z), 1).



CHAPTER 2
Sets of Finite Perimeter

Introduced by R. Caccioppoli in [Caccioppoli(1927)], the theory of sets of finite perimeter is closely

connected to the theory of BV function (Chapter 3): the set A⊂Ω has finite perimeter in Ω, indicated

by P (A; Ω), if and only if χA ∈ BV(Ω). In this case, P (A; Ω) coincides with |DχA|(Ω), the total

variation in Ω of the distributional derivative of χA. Essentially, a set of Finite Perimeter is a set whose

boundary is measurable and has a (at least locally) finite measure. It is also called a Caccioppoli set.

The key point to investigate is when the divergence of a vector field ϕ : Rn → Rn , bounded and

measurable, is a totally finite signed measureµ, i.e. divϕ =µ, and what is the sense of the Gauss-Green

theorem. This chapter recalls many results from [Ambrosio et al.(2000), Maggi(2012), Giusti(1977)].

2.1 The Gauss-Green Theorem

Open sets with C 1-boundary

Definition 2.1. Let A be an open set in Rn and let k ∈ N∪ {∞}, k ≥ 1. We say that A has a C k -

boundary (or smooth boundary if k =∞) if for every x ∈ ∂ A there exist ψ ∈ C k(B(x,ρ)), ρ > 0,

with∇ψ(y) 6= 0 for every y ∈ B(x,ρ) and

B(x,ρ)∩A=
n

y ∈ B(x,ρ) :ψ(y)< 0
o

and B(x,ρ)∩ ∂ A=
n

y ∈ B(x,ρ) :ψ(y) = 0
o

.

Definition 2.2 (Outer normal). The outer normal νA to A is defined locally as

νA=
∇ψ(y)
|∇ψ(y)|

, ∀y ∈ B(x,ρ)∩ ∂ A.

This definition is independent of the choice of ψ and ρ, therefore νA can be considered as a vector field

on the whole ∂ A, with νA ∈C k−1(∂ A; Sn−1).

Remark 2.3. If A is an open set with C 1-boundary, thenH n−1 ¬∂ A is a Radon measure on Rn .
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νA

x A

Sn−1

∂ A

Figure 3: The outer normal νA.

The elementary Gauss-Green formula
∫

Rn
ϕ∇ u =−

∫

Rn
u∇ϕ, ∀u ∈C 1(Rn), ϕ ∈C 1

c (R
n),

motivates the introduction of the distributional gradient D u of a function u ∈ L1
loc(R

n) as the linear

functional D u : C∞c (Rn)→Rn ,

〈D u,ϕ〉=−
∫

Rn
u∇ϕ, ϕ ∈C∞c (R

n).

Whenever D u is representable as integration of the test function ϕ against an L1
loc(R

n ;Rn) vector field,

that is, if there exists a vector field T ∈ L1
loc(R

n ;Rn) such that
∫

Rn
u∇ϕ =−

∫

Rn
ϕT , ∀ϕ ∈C∞c (R

n),

we say that u has a weak gradient on Rn .

Lemma 2.4 (Vanishing weak gradient). Let u ∈ L1
loc(R

n), if A is open and connected with
∫

Rn
u∇ϕ = 0, ∀ϕ ∈C∞c (A),

then there exists c ∈R such that u = c a.e. in A.

Theorem 2.5 (Gauss-Green). If A is an open set with C 1-boundary with νA the outer normal, then for

every ϕ ∈C 1
c (Rn),

∫

A
∇ϕ(x)dx =

∫

∂ A
ϕνA dH n−1.

Equivalently, the divergence theorem holds true:
∫

A
divT (x)dx =

∫

∂ A
T · νE dH n−1, ∀T ∈C 1

c (R
n ; Rn).

Open sets with almost C 1-boundary

Definition 2.6. An open set A⊂Rn has almost C 1-boundary if there exists a decomposition ∂ A=

M ∪M0, with M0 a closed set and

H n−1(M0) = 0
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such that, for every x ∈M = ∂ A\M0, there exists ρ> 0 and ψ ∈C 1(B(x,ρ)) with the property that

B(x,ρ)∩A=
n

y ∈ B(x,ρ) :ψ(y)< 0
o

,

B(x,ρ)∩ ∂ A= B(x,ρ)∩M =
n

y ∈ B(x,ρ) :ψ(y) = 0
o

.

We call the C 1-hypersurface M the regular part of ∂ A and the outer normal to A is defined as a

continuous vector field νA ∈C 0(M ; Sn−1), through the local representation

νA(y) =
∇ψ(y)
|∇ψ(y)|

, ∀y ∈ B(x,ρ)∩M .

Theorem 2.7 (Gauss-Green). If A is an open set in Rn with almost C 1-boundary, and M is the regular

part of ∂ A, then for every ϕ ∈C 1
c (Rn)

∫

A
∇ϕ =

∫

M
ϕνA dH n−1.

Surfaces

Definition 2.8. If A⊂Rn is a k-dimensional C 1-surface and T ∈C 1
c (Rn ;Rn) we shall say that

• T is tangential to A if T (x) ∈ TxA (tangent space) for every x ∈A;

• T is normal to A if T (x) ∈ (TxA)⊥ for every x ∈A.

Theorem 2.9 (Gauss-Green). If M ⊂Rn is a C 2-hypersurface with boundary Γ , then there exist a normal

vector field HM ∈C 0(M ; Rn) to M and a normal vector field νM
Γ ∈C 1(Γ ; Sn−1) to Γ such that

∫

M
∇M ϕ dH n−1 =

∫

M
ϕHM dH n−1+

∫

Γ
ϕνM
Γ dH n−2,

for every ϕ ∈C 1
c (Rn). Moreover, if T ∈C 1

c (Rn ; Rn) is normal to M , then

T · νM
Γ = 0 on Γ .

Remark 2.10. The vector field HM is called the mean curvature vector to A. The definition of the

scalar mean curvature HM : M →R of M depends on the mean curvature vector and the explicit choice

of a unit normal vector field νM : M → Sn−1 to M through the formula

HM =HM νM .

If there exists a continuous unit normal vector field νM to M , then νM is an orientation of M and M is

orientable and HM can be assumed continuous on M .
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M

νM

νM
Γ

Figure 4: Normals the boundary Γ of A induced through the tangential divergence theorem on A.

Theorem 2.11 (Divergence theorem on surfaces). Given a vector field T ∈C 1
c (Rn ; Rn), we define the

tangential divergence of T on M by the formula

divM T = divT − (∇T νM ) · νM = trace(∇M T ).

where νM : M → Sn−1 is any unit normal vector field to M .

Remark 2.12. Discontinuously switching νM to −νM leaves divM T unchanged. Hence, it is always

divM T ∈C 0(M ), even if M is not orientable.

2.2 Area Formula

Let u : Rn → Rm an injective Lipschitz function with 1 ≤ n ≤ m and A ∈ Rn . By Theorem 1.91,

u(A) is at most n-dimensional in Rm . The area formula permits to expressH n(u(A)) in terms of

integration over A of the Jacobian of u, defined as J u :Rn→ [0,∞],

J u(x) =







p

det(∇ u(x) ∗∇ u(x)) if u is differentiable at x;

+∞ if u is not differentiable at x

Remark 2.13. The set {x ∈Rn : J u(x)<∞} coincides with the set of points x ∈Rn at which u is

differentiable so, from Radamacher’s theorem, {J u <∞} has full Lebesgue measure in Rn .

Theorem 2.14 (Area formula for injective maps). If u : Rn → Rm , for 1 ≤ n ≤ m, is a injective

Lipschitz function and A⊂Rn is Lebesgue measurable, then

H n (u(A)) =
∫

A
J u(x)dx,

andH n ¬ u(Rn) is a Radon measure on Rm .

Lemma 2.15. If A is a Lebesgue measurable set in Rn and u : Rn → Rm , 1 ≤ n ≤ m, is a Lipschitz

function, then u(A) isH n -measurable in Rm .
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Theorem 2.16. If u :Rn→Rm , 1≤ n ≤ m, is a Lipschitz function and A= {x ∈Rn ; J u = 0}, then

H n(u(A)) = 0,

So the singular set {J u = 0} is mapped by u into anH n -negligible set.

Let A be a locallyH k -rectifiable set in Rn and let x ∈A be such that the approximate tangent space

TxA exists. As in the C 1-case, we say that u :Rn→Rm is tangentially differentiable with respect to A

at x if the restriction of u to x +TxA is differentiable at x.

Theorem 2.17. If A is a locallyH k -rectifiable set, and u :Rn→Rm is a Lipschitz map, then∇A u(x)

exists atH k -a.e. x ∈A.

Theorem 2.18 (Area formula on rectifiable sets). If A is a locallyH k -rectifiable set and u :Rn→Rm

is a Lipschitz map with 1≤ k ≤ m, then
∫

Rm
H 0 (A∩{u = y})dH k (y) =

∫

A
J Au dH k ,

where {u = y}= {x ∈Rn : u(x) = y}. In particular, if u is injective in A, then

H k (u(A)) =
∫

A
J Au dH k .

Definition 2.19. Let M be a k-dimensional C 1-surface inRn and let x ∈M . A function u :Rn→Rm

is tangentially differentiable with respect to M at x, if there exists a linear function∇M u(x) ∈Rm⊗Tx M

such that, uniformly on {v ∈ Tx M : |v |= 1},

lim
h→0

u(x + hv)− u(x)
h

=∇M u(x)v.

In other words, the restriction of u to x +Tx M is differentiable at x. The tangential Jacobian of u

with respect to A at x is then defined by

J M u(x) =
Æ

det(∇M u(x) ∗∇M u(x)).

Theorem 2.20. If M ⊂Rn is a k-dimensional C 1-surface and u ∈C 1(Rn ; Rm), with m ≥ k, is injective,

then

H k (u(M )) =
∫

M
J M u dH k .

2.3 Set of Finite Perimeter

Definition 2.21 (Set of finite perimeter). Let A be a Lebesgue measurable subset in Rn . We say that

A is a set of locally finite perimeter in Rn if for every compact set K ⊂Rn we have

sup

¨

∫

A
divϕ(x)dx : ϕ ∈C 1

c (R
n ;Rn), suppϕ ⊂K , sup

Rn
|ϕ| ≤ 1

«

<∞.

If this quantity is bounded independently of K , then we say that A is a set of finite perimeter in Rn .
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Definition 2.22. We denote the relative perimeter of A∈Ω⊂Rn the variation of χA ∈Ω by

P (A; Ω) = |µA|(Ω) = sup

¨

∫

A
divϕ(x)dx : ϕ ∈C 1

c (Ω;Rn), ‖ϕ‖∞ ≤ 1

«

and the total perimeter of A by

P (A) = |µA|(R
n).

Proposition 2.23. If A is a Lebesgue measurable set in Rn , then A is a set of locally finite perimeter if and

only if there exists a Rn -valued Radon measure µA on Rn such that
∫

A
∇ϕ =

∫

Rn
ϕ dµA, ∀ϕ ∈C 1

c (R
n). (2.1)

Moreover, A is a set of finite perimeter if and only if |µA|(Rn)<∞.

Proof. Let A be a set of locally finite perimeter in Rn , and consider the linear functional

L : C 1
c (R

n ;Rn)→R defined by 〈L,ϕ〉=
∫

A
divϕ(x)dx.

For every compact set K ∈Rn , there exists C (K) ∈R such that

|〈L,ϕ〉| ≤C (K) sup
Rn
|ϕ|, whenever suppϕ ⊂K .

Hence, L can be extended by density to a bounded continuous linear functional on C 0
c (Rn ;Rn),

and the existence of µA follows by Riesz Theorem. Clearly, if A is a set of finite perimeter then

µA(Rn)<∞. The converse implications are trivial. Indeed if K ∈Rn is compact, ϕ ∈ C 1
c (Rn ;Rn)

with |ϕ| ≤ 1 on Rn and suppϕ ⊂K , then by Equation (2.1) we have
∫

A
divϕ(x)dx ≤ |µA|(K).

Remark 2.24. Every set of Lebesgue measure zero is of finite perimeter, and has perimeter zero.

Remark 2.25. The class of sets of finite perimeter in Ω contains all the sets A with C 1-boundary

inside Ω such thatH n−1(Ω∩∂ A)<∞. Indeed by the classical Gauss-Green Theorem, for these open

sets A with C 1-boundary with the outer normal νA ∈C 0(∂ A; Sn−1) we have
∫

A
∇ϕ dx =

∫

Ω∩∂ A
ϕνA dH n−1, ∀ϕ ∈C 1

c (R
n),

or equivalently,
∫

A
divϕ dx =

∫

Ω∩∂ A
〈νA,ϕ〉dH n−1, ∀ϕ ∈C 1

c (Ω),

and thus A is a set of locally finite perimeter with

µA= νAH
n−1 ¬∂ A, |µA|=H

n−1 ¬∂ A

P (A; Ω) =H n−1(Ω∩ ∂ A), P (A) =H n−1(∂ A)

for every Ω⊂Rn . The Radon measure µA is called the Gauss-Green measure on A.
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A

Ω

Figure 5: The perimeter P (A; Ω) of A relative toΩ is the (n−1)-dimensional measure of the intersection

of the (reduced) boundary of A with Ω, marked in red.

Property 2.26. We summarize some useful properties:

• Invariant: P (A) of A is invariant by modifications of A on and/or by a set of measure zero,

although these modifications may widely affect the size of its topological boundary of A;

• Scaling and translation: if λ > 0, x ∈Rn and A is a set of finite perimeter in Rn , then x +λA is a

set of finite perimeter with P (x +λA) = λn−1P (A);

• Complement: if A is a set of locally finite perimeter, thenRn \A is a set of locally finite perimeter

with µRn\A=−µA and P (A) = P (Rn \A);

Definition 2.27 (Local convergence). Given Lebesgue measurable sets {Ah}h∈Rn , we say that Ah

locally converges to A, and write Ah
loc−→A, if

lim
h→∞

�

�

�K ∩ (A∆Ah )
�

�

�= 0, ∀K ⊂Rn compact,

where∆ here is the symmetric difference operation in set theory. Moreover, we say that Ah converges

to A, and write Ah →A, if

lim
h→∞
|A∆Ah |= 0.

Indeed, if Ω is a set of locally finite perimeter in Rn , we find

P (A; Ω) = sup

¨

∫

A
divϕ(x)dx : ϕ ∈C∞c (Ω; Rn), sup

Rn
|ϕ| ≤ 1

«

.

Proposition 2.28 (Lower semicontinuity of perimeter). If {Ah}h∈N is a sequence of sets of locally finite

perimeter in Rn , with

Ah
loc−→A, limsup

h→∞
P (Ah ; K)<∞,

for every compact set K ∈Rn , then A is of locally finite perimeter in Rn , µAh

∗−*µA and, for every open

set A⊂Rn we have

P (A; Ω)≤ liminf
h→∞

P (Ah ; Ω).
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Proposition 2.29. If A is a set of locally finite perimeter in Rn , then

suppµA=
n

x ∈Rn : 0< |A∩B(x,ρ)|<ωnρ
n , ∀ρ> 0

o

⊂ ∂ A.

Moreover, there exists a Borel set Ω such that |A∆Ω|= 0 and suppµΩ = ∂ Ω.

Theorem 2.30. For any set A of finite perimeter in Ω the distributional derivative DχA is an Rn -valued

finite measure in Ω. Moreover, P (A; Ω) = |DχA|(Ω) and a generalized Gauss-Green formula holds:
∫

A
divϕ dx =

∫

Ω
χA divϕ dx −

∫

Ω
〈νA, ϕ〉d|DχA|, ∀ϕ ∈ [C 1

c (Ω)]
n

where DχA= νA|DχA| is the polar decomposition of DχA.

Remark 2.31. A Lebesgue measurable set A⊂Rn is a set of locally finite perimeter if and only if the

distributional gradient DχA of χA ∈ L1
loc(R

n) can be represented as the integration with respect to the

Radon measure −µA.

Remark 2.32. An open set A with Lipschitz or polyhedral boundary is a locally finite perimeter,

with P (A; Ω) =H n−1(Ω∩ ∂ A) whenever Ω ⊂ Rn . Moreover, if A is bounded, then A is of finite

perimeter. In particular, convex sets are of locally finite perimeter, while bounded convex sets are of

finite perimeter.

Lemma 2.33. If A and B are sets of (locally) finite perimeter in Rn , then A∪ B and A∩ B are sets of

(locally) finite perimeter in Rn , and, for A⊂Rn open,

P (A∪B ; Ω)+ P (A∩B ; Ω)≤ P (A; Ω)+ P (B ; Ω).

Proof. We can consider un , vn smooth functions such that un→ χA, vn→ χB , and, as n→∞,

∫

Ω
|∇ un(x)|dx→ P (A; Ω),

∫

Ω
|∇vn(x)|dx→ P (B ; Ω).

Then,

un ∨ vn =max{un , vn}→ χA∪B and un ∧ vn =min{un , vn}→ χA∩B ,

and using the lower semicontinuity of the total variation we find

P (A∪B ; Ω)+ P (A∩B ; Ω)≤ liminf
n→∞

∫

Ω
|∇(un ∨ vn)|+ |∇(un ∧ vn)|dx.

The inequality follows from
∫

Ω
|∇(un ∨ vn)(x)|+ |∇(un ∧ vn)(x)|dx =

∫

Ω
|∇ un(x)|+ |∇vn(x)|dx→ P (A; Ω)+ P (B ; Ω).
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2.4 Reduced boundary

Definition 2.34 (Reduced boundary). The reduced boundary ∂ ∗A of a set of locally finite perimeter

A∈Rn is the set of those x ∈ suppµA such that the limit

lim
ρ→0+

µA(B(x,ρ))
|µA|(B(x,ρ))

, exists and belongs to Sn−1.

We may define a Borel function µA : ∂ ∗A→ Sn−1 by setting

νA(x) = lim
ρ→0+

µA(B(x,ρ))
|µA|(B(x,ρ))

, x ∈ ∂ ∗A.

We call νA the measure-theoretic outer unit normal to A.

Remark 2.35. By the Bezicovič Theorem 1.55, we have µA= νA|µA|
¬
∂ ∗A, so that the distributional

Gauss-Green Theorem takes the form
∫

A
∇ϕ =

∫

∂ ∗A
ϕνA d|µA|, ∀ϕ ∈C 1

c (R
n).

Example 2.36. If A is an open set with C 1 boundary, then ∂ ∗A= ∂ A and the measure-theoretic outer

unit normal coincides with the classical notion of outer unit normal.

Remark 2.37. If A is a set of locally finite perimeter and |A∆Ω| = 0, then µA = µΩ and therefore

∂ ∗A= ∂ ∗Ω: the reduced boundary ∂ ∗A is uniquely determined by the Gauss-Green measure µA of A.

Remark 2.38. By definition, ∂ ∗A⊂ suppµA while, by Proposition 2.29, suppµA⊂ ∂ A. So ∂ ∗A⊂

suppµA⊂ ∂ A. Hence, the reduced boundary is always a subset of the topological boundary. In fact,

the Gauss-Green measure µA is always concentrated on ∂ ∗A, and hence on ∂ ∗A. By definition of

support, suppµA⊂ ∂ ∗A, and therefore

suppµA= ∂ ∗A.

Therefore, up to modification on sets of measure zero,

∂ ∗A= ∂ A.

Example 2.39. If A⊂ R2 is a square with sides parallel to the coordinate axes, then the limit νA(x)

exists for every x ∈ ∂ A. However |νA|= 1 if and only if x is not a vertex of A: indeed, if x is a vertex,

then νA(x) = |(e1+ e2)/2|< 1. Thus, ∂ ∗A= ∂ A minus the four vertexes of A.

Considering the blow-up Ax,ρ of A:

Ax,ρ =
A− x
ρ
=φx,ρ(A), x ∈Rn , ρ> 0,
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where, as usual, φx,ρ(y) = (y − x)/ρ, y ∈Rn , by Lebesgue’s point Theorem we have

x ∈A(1) if and only if Ax,ρ
loc−→Rn , as ρ→ 0+

x ∈A(0) if and only if Ax,ρ
loc−→;, as ρ→ 0+.

Theorem 2.40 (Tangential properties of the reduced boundary). If A is a set of locally finite perimeter

in Rn , and x ∈ ∂ ∗A, then

Ax,ρ
loc−→Hx =

n

y ∈Rn : y · νA(x)≤ 0
o

, as ρ→ 0+.

Similarly, if πx = ∂ Hx = νA(x)
⊥, then, as ρ→ 0+,

µAx,ρ

∗−*νA(x)H
n−1πx , |µAx,ρ

| ∗−*H n−1 ¬πx .

Remark 2.41. As consequences, a set of locally finite perimeter has density one-half on its reduced

boundary while the relative perimeter of A inside balls B(x,ρ) centered at x ∈ ∂ ∗A is asymptotic to

the measure of a (n− 1)-dimensional ball of radius ρ as ρ→ 0+.

Corollary 2.42. If A is a set of locally finite perimeter and x ∈ ∂ ∗A, then

lim
ρ→0+

A∩B(x,ρ)
ωnρn

=
1
2

and lim
ρ→0+

P (A; B(x,ρ)
ωnρn

= 1.

In particular, ∂ ∗A⊂A(1/2), the set of points of density one-half of A.

Theorem 2.43 (De Giorgi’s structure theorem). If A is a set of locally finite perimeter in Rn , then the

Gauss-Green measure µA of A satisfies

µA= νAH
n−1 ¬∂ ∗A,

|µA|=H
n−1 ¬∂ ∗A,

and the generalized Gauss-Green formula holds true:

∫

A
∇ϕ =

∫

∂ ∗A
ϕνA dH n−1, ∀ϕ ∈C 1

c (R
n).

Moreover, there exist countably many C 1-hypersurface Mh in Rn , compact sets Kh ⊂Mh , and a Borel set F

withH n−1(F ) = 0 such that

∂ ∗A= F ∪
⋃

h∈N
Kh ,

and, for every x ∈Kh , νA(x)
⊥ = Tx Mh , the tangent space to Mh at x.
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2.5 Perimeter problems in Calculus of Variations

Isoperimetric problem

The isoperimetric problem has its roots in Aeneid by the Roman poet Virgil. According to the myth,

Dido was the eldest daughter of Belus, king of Tyre, and she got married with Acerbas (also called

Sichaeus), a priest of Hercules, the richest Phoenician. One day, Pygmalion, Dido’s brother, blinded

by lust to own the royal treasure, surprised and murdered Sichaeus, while he was sacrificing to the

gods. For a long time, Pygmalion hid this murder. But the ghost of Sichaeus, deprived by the honours

of a tomb, appeared in a dream to Dido, showing her the altar where he was assassinated. Then, he

encouraged her to escape with the Phoenician treasures. Dido left Tyre with a large following and

began a long pilgrimage, whose main stages were Cyprus and Malta. Juno, the Queen of gods and

Dido’s protector, promised them a new land to build their new city in the point where they would

have found an horse’s skull, under the sand. After having landed the coast of Libya, Dido obtained

from Iarba, the Libian King, the permission to settle there. According to King’s will, she would have

owned as much land as an ox-hide could have contained. Astutely, Dido chose a peninsula and cut the

skin of a bull into many thin strips and put them around the land: the future Carthage. She was able to

occupy a territory of about twenty-two stages (a stage is equivalent to about 185.27 m2) . For all these

reasons, the old name of Carthage is Birsa, which in Greek means ox-hide and in Phoenician fortress.

This problem can be reformulated as a basic problem of Calculus of Variation (see [Marigonda(2012)]

for more details):

J (x) =−A(x) =−
∫ b

a
x(t )dt , such that

∫ b

a

p

1+ ẋ(t )dt = ` > b − a,

with x(a) = x(b ) = 0. If x is a solution, we consider the extremal points of the Lagrangian function

L (t , x, v) =−λ0x +λ
p

1+ v2.

If ` > b − a, then λ0 6= 0 so we can take λ0 = 1 and the Euler’s equations become

d
dt

�

−λ ẋ
p

1+ ẋ2

�

=−1, or
−λẋ
p

1+ ẋ2
=−t +C .

Raising the square, we obtain

ẋ =
c − t

p

λ2− (c − t )2
,

from which x(t ) =
p

λ2− (c − t )2+K so (x −K)2+(t − c)2 = λ2. Hence, given some curves with

equal lengths, the circumference described the largest area. So Dido’s problem is closely related to the

isoperimetric problem.
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Definition 2.44 (Euclidean isoperimetric problem). We call the Eucludean isoperimetric problem

inf
n

P (A) : |A|= m
o

, m > 0.

Theorem 2.45 (Euclidean isoperimetric inequality). If A is a Lebesgue measurable set in Rn with

|A|<∞, then

P (A)≥ nω1/n
n |A|(n−1)/n .

Equality holds if and only if |A∆B(x,ρ)|= 0 for some x ∈Rn , ρ> 0.

Remark 2.46. Theorem 2.45 is false in dimension one: the half-line A= (0,∞) has finite perimeter

in R but both A and R \A have infinite measure.

Definition 2.47 (Steiner symmetrization). Let us decompose Rn , n ≥ 2, as the product Rn−1×R,

with the projections p : Rn → Rn−1 and q : Rn → R, so that x = (px,qx) for x ∈ Rn (in particular,

qx = xn). With every z ∈Rn−1 we associate the vertical slice Az ⊂R of A defined as

Az =
n

t ∈R : (z, t ) ∈A
o

,

and define the Steiner symmetrization As of A as

As =
n

x ∈Rn : |qx| ≤
L 1(Apx )

2

o

.

By Fubini’s Theorem, |A|= |As | and diameters are decreased under Steiner symmetrization.

Theorem 2.48. If A is a set of finite perimeter in Rn , with |A|<∞, then As is a set of finite perimeter in

Rn with

P (As )≤ P (A), (2.2)

and, in fact, whenever Ω is an open set in Rn−1, P (As ; Ω×R)≤ P (A; Ω×R). Moreover,

• if equality holds in Equation (2.2), then, for a.e. z ∈Rn−1, the vertical slice Az is equivalent to an

interval;

• if A is equivalent to a convex set, then equality holds in (2.2) if and only if there exists c ∈R such

that A is equivalent to As + c en .

Proposition 2.49 (Slicing perimeter by lines). If A is a set of locally finite perimeter in Rn , then, for a.e.

z ∈Rn−1, the vertical slice Az is a set of locally finite perimeter in R, and, for I ⊂R bounded and open,

and H ⊂Rn−1 compact,
∫

H
P (Az ; I )dz ≤ P (A; H × I ).

If A is a set of finite perimeter, then, for a.e. z ∈Rn−1, Az is of finite perimeter, and
∫

Rn−1
P (Az )dz ≤ P (A).
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The Plateau-type Problem

The classical Plateau problem, minimizing area among surfaces passing through a given curve, is one

of the archetypical problems in Geometric Measure Theory.

Definition 2.50. Given a set A⊂Rn , and a set E0 of finite perimeter in Rn , the Plateau-type problem

in A with boundary data E0 amounts to minimizing P (E) among those sets of finite perimeter E that

coincide with E0 outside A. Precisely we consider

γ (A, E0) = inf
n

P (E) : E \A= E0 \A
o

. (2.3)

Remark 2.51. Roughly speaking, prescribing that E \A= E0 \A we impose E0 ∩ ∂ A as boundary

condition for the admissible sets E in (2.3). At the same time, the set A, being the region where E0 can

be modified to minimize perimeter, may act as an obstacle. In general we do not expect uniqueness of

minimizers for this problem.

Theorem 2.52. If R> 0 and {Eh}h∈N are sets of finite perimeter in Rn , with

sup
h∈N

P (Eh )<∞,

Eh ⊂ BR, ∀h ∈N,

then there exists E of finite perimeter in Rn and h(k)→∞ as k→∞, with

Eh(k)→ E , µEh(k)

∗−*µE , E ⊂ BR,

with BR = B(xR,ρR).

Proposition 2.53 (Existence of minimizers for the Plateau-type problem). Let A⊂Rn be a bounded

set and let E0 be a set of finite perimeter in Rn . Then there exists a set of finite perimeter E such that

E \A= E0 \A and P (E)≤ P (F ) for every F such that F \A= F \ E0. In particular, E is a minimizer in

the variational problem (2.3).

Proof. Since E0 itself is admissible in Equation (2.3), we have γ = γ (A, E0)<∞. Let us now consider

a minimizing sequence {Eh}h∈N in Equation (2.3),

Eh \A= E0 \A, P (Eh )≤ P (E0), lim
h→∞

P (Eh ) = γ .

If Mh = Eh∆E0 = (Eh \ E0)∪ (E0 \ Eh ), then, by Lemma 2.33, Mh is a set of finite perimeter with

P (Mh )≤ 2P (Eh )+ 2P (E0)≤ 4P (E0).

Since A is bounded and Mh ⊂A, by Theorem 2.52 there exists a set of finite perimeter M such that, up

to extracting a subsequence, we have Mh →M . As

Eh = (E0 ∪Mh ) \ (E0 ∩Mh ) ,
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and since Mh →M , we find that Eh → E , where we have set

E = (E0 ∪M ) \ (E0 ∩M ) .

In particular, E \A= E0 \A, and, by the lower semicontinuity of perimeter,

γ ≤ P (E)≤ liminf
h→∞

P (Eh ) = γ .

2.6 First and Second variation of perimeter

One of the most fundamental ideas in the Calculus of Variations, is that of deriving necessary conditions

for minimality from the basic rules of Calculus by looking at curves of competitors which pass through

a given candidate minimizer. Let us examine the case of a perimeter minimizer A into some open set

Ω. We construct a curve of competitors passing through A by fixing a compactly supported smooth

vector field ϕ ∈C∞c (Ω; Rn), and noticing that, for small values of a real parameter t , the maps

ut :Rn→Rn , ut (x) = x + tϕ(x), x ∈Rn ,

define a one-parameter family of diffeomorphism of Rn , with u0(x) = x and ut = u0 outside the

support ϕ. Therefore we have A∆ut (A)⊂⊂Ω whenever t is small enough, and we may infer (up to

differentiability issues) the necessary conditions to the perimeter minimality of A in Ω,

d
dt

�

�

�

�

�

t=0

P (ut (A),Ω) = 0 and
d2

dt 2

�

�

�

�

�

t=0

P (ut (A),Ω)≥ 0.

First variation of perimeter

Definition 2.54. We say that u :Rn→Rn is a diffeomorphism of Rn if u is smooth, bijective, and

has a smooth inverse g = u−1. If A is an open set with C 1-boundary, then u(A) is still an open set

with C 1-boundary. So, from u{ψ= 0}= {ψ ◦ g = 0} and∇(ψ ◦ g ) = (∇ g )∗[(∇ψ ◦ g )] we find

νu(A)(y) =
∇ g (y)∗νA(g (y))
|∇ g (y)∗νA(g (y))|

, ∀y ∈ ∂ u(A) = u(∂ A).

Proposition 2.55 (Diffeomorphic images of sets of finite perimeter). If A is a set of locally finite

perimeter in Rn and u is a diffeomorphism of Rn with g = u−1, then u(A) is a set of locally finite

perimeter in Rn with

H n−1 (u(∂ ∗A)∆∂ ∗u(A)) = 0,
∫

∂ ∗u(A)
ϕνu(A) dH

n−1 =
∫

∂ ∗A
(ϕ ◦ u)J u(∇ g ◦ u)∗νA dH n−1,

for every ϕ ∈C 0
c (Rn). In particular, for every Borel set Ω⊂Rn ,

H n−1 (Ω∩ ∂ ∗u(A)) =
∫

g (Ω)∩∂ ∗A
J u
�

�(∇ g ◦ u)∗νA
�

�dH n−1.
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Definition 2.56. A one parameter family of diffeomorphism of Rn is a smooth function

(x, t ) ∈Rn × (−ε,ε) 7−→ u(t , x) = ut (x) ∈R
n , ε > 0,

such that, for each fixed |t |< ε, ut :Rn→R is a diffeomorphism of Rn . Given an open set Ω in Rn ,

{ut }|t |<ε is a local variation in Ω if it defines a one-parameter family of diffeomorphism such that

u0(x) = x, ∀x ∈Rn ,

{x ∈Rn : ut (x) 6= x} ⊂⊂A, ∀|t |< ε.

Remark 2.57. It is easily seen that, if {ut }|t |<ε is a local variation in Ω, then ut (A)∆Ω⊂⊂Ω, for all

A⊂Rn , and the following Taylor’s expansions holds uniformly on Rn ,

ut (x) = x + tϕ(x)+O (t 2), ∇ ut (x) = Id+ t∇ϕ(x)+O (t 2),

where ϕ ∈C∞c (Ω; Rn) is the initial velocity of {ut }|t |<ε,

ϕ(x) =
∂ ut

∂ t
(x, 0), x ∈Rn .

Conversely, starting from ϕ ∈C∞c (Ω; Rn) there are two general ways to construct a local variation

{ut }|t |<ε in Ω having ϕ as initial velocity. The first naive method, consist of setting

ut (x) = x + tϕ(x), x ∈Rn .

The second method relies on standard ODE theory, and consists of solving the Cauchy problem

(parametrized with respect to the initial condition x ∈Rn)

∂

∂ t
u(t , x) = ϕ(u(t , x)) and u(0, x) = x, x ∈Rn ,

for small values of t . In both cases, we say that {ut }|t |<ε is a local variation associated with ϕ.

Theorem 2.58 (First variation of perimeter). We aim to compute the first variation of perimeter

(relative to Ω) with respect to local variations {ut }|t |<ε:

d
dt

�

�

�

�

�

t=0

P (ut (A); Ω), ∀ϕ ∈C∞c (Ω; Rn) given.

If Ω is an open set in Rn , A is a set of locally finite perimeter, and {ut }|t |<ε is a local variation in Ω, then

P (ut (A); Ω) = P (A; Ω)+ t
∫

∂ ∗A
divAϕ dH n−1+O (t 2),

where ϕ is the initial velocity of {ut }|t |<ε and divAϕ : ∂ ∗A→R,

divAϕ(x) = divϕ(x)− νA · ∇ϕ(x)νA(x), x ∈ ∂ ∗A,

is a Borel function called boundary divergence of ϕ on A.
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Remark 2.59. If A is an open set with C 2-boundary, then by applying the Gauss-Green Theorem 2.9

for Surfaces to M = ∂ A we find that
∫

∂ A
div∂ Aϕ dH n−1 =

∫

∂ A
ϕ ·H∂ A dH n−1, ∀ϕ ∈C 1

c (R
n ;Rn),

where div∂ A denotes the tangential divergence of ϕ with respect to ∂ A, and where H∂ A = H∂ AνA

is the mean curvature vector to ∂ A. Remembering that divA T = div∂ A T , similarly, we shall set

HA=H∂ A and HA=H∂ A; then the first variation of perimeter on open sets with C 2-boundary takes

the form
d
dt

�

�

�

�

�

t=0

P (ut (A); Ω) =
∫

∂ A
(T · νA)HA dH n−1,

and if A is of locally finite perimeter, then the distributional mean curvature vector of A in Ω open is

the functional HA : C∞c (A; Rn)→R, defined by the formula

〈HA, ϕ〉=
∫

∂ ∗A
divAϕ dH n−1,

and HA=HRn\A. Moreover, if Ω∩ ∂ A is a C 2-hypersurface in Rn , then HA defines a signed Radon

measure on Ω, with HA=HAνAH n−1 ¬ (Ω∩ ∂ A).

Remark 2.60. A set of locally finite perimeter A is stationary for perimeter in an open set Ω if

suppµA= ∂ A and
d
dt

�

�

�

�

�

t=0

P (ut (A); Ω) = 0,

whenever {ut }|t |<ε is a local variation in Ω.

Corollary 2.61 (Vanishing mean curvature). A set of locally finite perimeter A is stationary for perimeter

in the open set Ω if and only if
∫

∂ ∗A
divAϕ dH n−1 = 0, ∀ϕ ∈C 1

c (Ω; Rn).

In particular, A has vanishing distributional mean curvature in Ω.

Second variation of perimeter

Remark 2.62. If A is an open set with C 2-boundary in Ω, then there exists an open set Ω′ with

(Ω∩ ∂ A)⊂Ω′ ⊂Ω such that the signed distance function sA :Rn→R of A,

sA(x) =







dist(x, ∂ A), if x ∈Rn \A,

−dist(x, ∂ A), if x ∈A,

satisfies sA ∈ C 2(Ω′). We may thus define a vector field ψA ∈ C 1(Ω′;Rn) and a tensor field ΩA ∈

C 0(Ω′; Sym(n)) by setting

ψA=∇ sA, ΩA=∇
2 sA on Ω′.
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It turns out that ψA is an extension to Ω′ of the outer unit normal νA to A, with the property that

|ψA|= 1 on Ω′. Moreover, on B(x,ρ) we have

ΩAψA= 0 and ψA · (ΩAe) = 0, ∀e ∈Rn ,

so, in geometric terms, if y ∈ B(x,ρ)∩ ∂ A, then ΩA(y), seen as a symmetric tensor on Ty∂ A⊗Ty∂ A,

is the second fundamental form of ∂ A at y.

Theorem 2.63 (Second variation of perimeter). If A is an open set with C 2-boundary in the open set

Ω, ζ ∈ C∞c (Ω) and {ut }|t |<ε is a local variation associated with the normal vector field ϕ = ζ ψA ∈

C 1
c (Ω;Rn), then

d2

dt 2

�

�

�

�

�

t=0

P (ut (A); Ω) =
∫

∂ A
|∇Aζ |

2+
�

H 2
A− |ΩA|

2�ζ 2 dH n−1,

where∇Aζ =∇ζ − (νA · ∇ζ )νA denotes the tangential gradient of ζ with respect to the boundary of A.

In particular, if A is a perimeter minimizer in Ω, then
∫

∂ A
|∇Aζ |

2− |ΩA|
2ζ 2 dH n−1 ≥ 0, for every ζ ∈C∞c (Ω).

2.7 Coarea formula

As Didone for the isoperimetric problem in Section 2.5, we approach the sets by cutting their area.

If u :Rn→R is a smooth function, then, by the Morse-Sard Lemma (see Lemma 2.66), the set

{u = t}= {x ∈Rn : u(x) = t}

is the smooth hypersurface in Rn for a.e. t ∈R. It is often natural to look at the integral over t ∈R of

theH n−1-dimensional measure of the slices A∩{u = t} of a Borel set A⊂Rn ,
∫

R
H n−1 (A∩{u = t})dt ,

which, by the coarea formula, coincides with the total variation of u over A,
∫

A
|∇ u|=

∫

R
H n−1 (A∩{u = t})dt .

Theorem 2.64 (Coarea formula). If u : Rn → R is a Lipschitz function and A ⊂ Rn is open, then

t ∈R 7−→ P ({u > t}; A) is a Borel function on Rn with
∫

A
|∇ u|=

∫

R
P ({u > t}; A)dt (2.4)

as elements of [0,∞]. In other words, the total variation of a function is also the accumulated surfaces of

all its level sets.
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Proof. In the proof, we are going to use the following layer-cake formula. If u ∈ L1(Rn), u ≥ 0, and

v ∈ L∞(Rn), then
∫

Rn
u(x)v(x)dx =

∫ ∞

0
dt
∫

{u>t}
v(x)dx. (2.5)

Indeed, for every x ∈Rn ,

u(x) =
∫

R
χ(0,u(x))(t )dt =

∫

R
χ(0,∞)(t )χ{u>t}(x) =

∫ ∞

0
χ{u>t}(x)dt ,

and thus, by Fubini’s Theorem,
∫

{u≥0}
u(x)v(x)dx =

∫

{u≥0}
v(x)

∫ ∞

0
χ{u>t}(x)dt =

∫ ∞

0
dt
∫

{u≥t}
v(x)dx.

• Step one: If T ∈C 1
c (A; Rn), then

∫

{u>t} divT is a Borel measurable function of t ∈R. Indeed, it

is the difference of two increasing functions of t ∈R, namely
∫

{u>t}
divϕ =

∫

{u>t}
(divT )+−

∫

{u>t}
(divT )−.

IfF is countable and dense in C∞c (A; Rn), then, by Definition 2.22,

P ({u > t ; A}) = sup

¨

∫

{u>t}
divT : T ∈F , sup

Rn
|T | ≤ 1

«

.

Since the supremum of countably many Borel functions is a Borel function, we have proved

that t ∈R 7−→ P ({u > t}; A) is a Borel function.

• Step two: We prove that if u is a non-negative Lipschitz function then
∫

A
|∇ u| ≤

∫ ∞

0
P ({u > t}; A)dt ,

for every open set A∈Rn(in particular, if the left-hand side is infinite then the right-hand side is

infinite too). If T ∈C∞c (A; Rn), |T | ≤ 1, then by Definition 2.22

∫

{u>t}
divT ≤ P ({u > t}; A), t > 0. (2.6)

By the distributional divergence Theorem and by Equation (2.5) (with v = divT ),

−
∫

A
∇ u ·T =

∫

Rn
u divT =

∫ ∞

0
dt
∫

{u>t}
divT ≤

∫ ∞

0
P ({u > t}; A)dt . (2.7)

Let K be a compact subset of A and define S :Rn→Rn as

S(x) =−χK∩{∇ u 6=0}(x)
∇ u(x)
|∇ u(x)|

, x ∈Rn ,
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so that S is bounded Borel measurable vector field with |S | ≤ 1. For every ε < dist(K ,∂ A) we

have that the convolution Sε = (S ∗ρε) ∈ C∞c (A;Rn) with |Sε| ≤ 1 and Sε(x)→ S(x) for a.e.

x ∈Rn . We let ϕ = Sε and ε→ 0 in Equation (2.7) to find that

∫

K
|∇ u| ≤

∫ ∞

0
P ({u > t}; A)dt ,

(where the left-hand side is finite). Since K is arbitrary, we find Equation (2.6).

• Step three: We prove that if u is non-negative Lipschitz function then

∫

A
|∇ u| ≥

∫ ∞

0
P ({u > t}; A)dt .

To this end we consider the increasing function m :R→ [0,∞) defined as

m(t ) =
∫

A∩{u≤t}
|∇ u|, t ∈R.

The classical derivative m′(t ) exists for a.e. t ∈R, and

∫ ∞

0
m′(t )dt ≤ lim

t→∞
m(t )− lim

t→−∞
m(t ) =

∫

A
|∇ u|.

We are thus left to show that

m′(t )≥ P ({u > t}; A), for a.e. t ≥ 0. (2.8)

Given t ≥ 0 and ε > 0, define a piecewise affine function ψ : [0,∞)→ [0,1] as

ψ(s) =



















1, s ∈ [t + ε,∞),

ε−1(s − t ), s ∈ [t , t + ε),

0, s ∈ [0, t ).

From the chain rule, ψ◦ u admits (ψ◦ u)∇ u =−ε−1χ(t ,t+ε)(u)∇ u as its weak gradient on Rn .

If T ∈C∞c (A;Rn) with |T | ≤ 1, then

∫

A
(ψ ◦ u)divϕ =−1

ε

∫

A∩{t+ε>u>t}
∇ u ·T ≤ 1

ε

∫

A∩{t+ε>u>t}
|∇ u| ≤

m(t + ε−m(t )
ε

.

As ε→ 0+ we find that, for a.e. t > 0,

∫

A∩{u>t}
divT ≤ m′(t ),

which implies Equation (2.8) by the arbitrariness of T .



42 2. Sets of Finite Perimeter

• Step four: Finally, let u :Rn→R be a Lipschitz function, and consider its positive and negative

parts u+ and u−. By the chain rule,∇ u+ = χ{u>0}∇ u and∇ u− =−χ{u<0}∇ u, so, from the

previous steps, the Coarea formula (2.4) holds true for u+ and u−. Hence,
∫

A
|∇ u|=

∫

A
|∇ u+|+

∫

A
|∇ u−|=

∫ ∞

0
P ({u+ > t}; A)dt +

∫ ∞

0
P ({u− > t}; A)dt

=
∫ ∞

0
P ({u > t}; A)dt +

∫ ∞

0
P ({u <−t}; A)dt

=
∫ ∞

0
P ({u > t}; A)dt +

∫ 0

−∞
P ({u < t}; A)dt . (2.9)

Moreover, by the complement property in Property 2.26, we have that

P ({u < t}; A) = P ({u ≥ t}; A).

Since |{u = t}|= 0 for a.e. t ∈ R, we thus have P ({u ≥ t}; A) = P ({u > t}; A) for a.e. t ∈ R.

Hence the Coarea formula follows from Equation (2.9).

Remark 2.65. A special case of Coarea formula (2.4) is Fubini’s Theorem 1.22. Another special case is

integration in spherical coordinates in which the integral of a function on Rn is related to the integral

of the function over spherical shells (level sets of the radial function).

Lemma 2.66 (Morse-Sard). If u ∈ C∞(Rn) and A = {x ∈ Rn : ∇ u(x) = 0}, then |u(A)| = 0. In

particular, {u = t}= {x ∈Rn : u(x) = t} is a smooth hypersurface in Rn for a.e. t ∈R.

Remark 2.67. By the Morse-Sard Lemma, if u ∈ C∞(Rn), then, for a.e. t ∈R, {u > t} is an open

set with smooth boundary. Hence P ({u > t}; Ω) =H n−1(Ω∩{u = t}) for a.e. t ∈R and for every

A⊂Rn open. So, for every Borel set A⊂Rn ,
∫

A
|∇ u|=

∫

Rn
H n−1 (A∩{u = t})dt .

Example 2.68. Let u be the non-negative Lipschitz function of Figure 6, with compact support on R.

By the Fundamental Theorem of Calculus
∫ a1

a0

|u ′|=
∫ a4

a3

|u ′|= t2 with
∫ a3

a1

|u ′|=
∫ a3

a2

|u ′|= t2− t1 =⇒
∫

R
|u ′|= 4t2− 2t1.

At the same time

P ({u > t}) =























0 if t ∈ (−∞, 0)∪ (t2,+∞)

2 if t ∈ (0, t1)

4 if t ∈ (t1, t2),

so that, as expected,
∫

R
P ({u > t})dt = 2t1+ 4(t2− t1).
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t2

t1

0
a0

u

a1 a2 a3 a4

Figure 6: Graphic interpretation of coarea formula for Example 2.68.

Theorem 2.69 (Approximation by smooth sets). A Lebesgue measurable set A⊂Rn is of locally finite

perimeter if and only if there exists a sequence {Ah}h∈N of open sets with smooth boundary in Rn and

εh → 0+, such that

Ah
loc−→A, sup

h∈N
P (Ah ; BR)<∞, ∀R> 0

|µAh
| ∗−* |µA| ∂ Ah ⊂ χεh

(∂ A).

In particular, P (Ah ; Ω)→ P (A; Ω) whenever P (A; ∂ Ω) = 0. Moreover, if |A|<∞, then Ah →A while

if P (A)<∞, then P (Ah )→ P (A).

Remark 2.70 (Approximation by polyhedra). When A is a set of finite perimeter inRn with |A|<∞,

we may also approximate A by a sequence of open bounded sets with polyhedral boundary.

Theorem 2.71 (Coarea formula revised). If u :Rn→R is a Lipschitz function, then
∫

A
|∇ u|=

∫

R
H n−1(A∩{u = t})dt for every Borel set A⊂Rn . (2.10)

Remark 2.72. If A is of finite perimeter and u :Rn→R is a Lipschitz function, then for a.e. t ∈R,

P (A∩{u > t}) = P (A; {u > t})+H n−1 (A∩{u = t}) .

Lemma 2.73 (Slicing the set of critical points). If u :Rn→R is a Lipschitz function and A= {x ∈Rn :

∇ u = 0}, then for a.e. t ∈R,

H n−1 (A∩{u = t}) = 0,

as, close to a point x where∇ u(x) = 0, u is almost constant, so u({∇ u(x) = 0}) is expected to have zero

Lebesgue measure.

Example 2.74. From the coarea formula, we immediately deduce that if u : Rn → R is a locally

Lipschitz function, then, for a.e. t > 0, the open set {u > t} is of locally finite perimeter in Rn .
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Moreover, if
∫

{u>s}|∇ u| <∞ for some s ∈ R, then for a.e. t > s the open set {u > t} is of locally

finite perimeter in Rn . Hence, by Theorem 2.71 and De Giorgi’s structure Theorem 2.43, for every

A⊂Rn open,
∫

A
|∇ u|=

∫

R
H n−1 (A∩ ∂ ∗{u > t})dt . (2.11)

Remark 2.75. Equation (2.10) is stronger than Equation (2.11) because {u = t} is the topological

boundary of {u > t}. TheH n−1-equivalence of the topological boundary ∂ {u > t} and the reduced

boundary ∂ ∗{u > t} of a.e. super-level set of a Lipschitz function is a corollary of Theorem 2.71.

Remark 2.76. If A is of finite perimeter and u :Rn→R is a Lipschitz function, then for a.e. t ∈R,

P (A∩{u > t}) = P (A; {u > t})+H n−1 (A∩{u = t}) .



CHAPTER 3
Functions of Bounded Variation

Functions of Bounded Variation were singled out as those functions for which a control on the

oscillations is possible, suitable to ensure the convergence of the Fourier series. These functions in R

have been introduced by C. Jordan in 1881 in connexion with Dirichlet’s test for the convergence

of Fourier series. In the following we adopt the notation of [Ambrosio et al.(2000)] where νA is the

inner normal of set A.

Theorem 3.1. Let u :R→R be a 2π periodic summable function.

• If u has bounded variation in an open interval I then its Fourier series converges to

1
2

�

u(x+)+ u(x−)
�

, ∀x ∈ I .

• If in addition u is continuous in I then its Fourier series converges uniformly to u on every closed

interval J ⊂ I .

Jordan also pointed out the canonical decomposition of a BV function as the difference of two

increasing functions. In 1905, G. Vitali gave the first definition of a BV function of two real variables

[Vitali(1905)].

Definition 3.2. Given u :Ω⊂R2→R, for every rectangle R⊂Ω with vertices Pi , j = (xi , y j ) with

x1 < x2, y1 < y2, setting

dV(u, R) = u(p1,1)− u(P1,2)− u(P2,1)+ u(P2,2),

we define the double variation of u in Ω as

dV(u,Ω) = sup

¨ n
∑

i=1

dV(u, Ri ) : Ri ⊂Ω pairwise disjoint rectangles

«

;

then u is said to have bounded variation in Ω if dV(u,Ω) is finite.
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L. Tonelli noticed that the double variation was not the right generalization of the one-dimensional

variation, because it contains second order elements, related to the curvature of the graph of u rather

than its area. Thus he proposed to call functions of bounded variation in Ω⊂R2 those continuous

functions for which the surface area of the projections of the graph of u onto the vertical coordinate

planes (counting multiplicities) are finite. Taking for simplicity Ω= (0,1)2, this amounts to require

∫ 1

0
pV(ux , (0,1))dx <∞ and

∫ 1

0
pV(uy , (0,1))dy <∞,

where ux ( · ) = u(x, · ), uy ( · ) = u( · , y) and pV defined as in Equation (3.8). However this approach

depends on the choice of the coordinate axes if u is not continuous.

It was only with G. Fichera and E. De Giorgi that the theory of BV functions was tied with

distributions. Fichera considered the set functions Ti u, defined, for Q cube in Ω with sides parallel to

the coordinate axes, by the following equality:

Ti u(Q) =
∫

∂ Q
uνi dL n−1, i = 1, . . . , n,

where νi is the i -th component of the outward pointing unit normal to ∂ Q. Then u is BV if the set

functions Ti u have finite total variation: the fact that u is in BV means that its partial derivatives,

in the sense of distributions, are measures with finite total variation. De Giorgi proved that given

u ∈ L∞(Rn) and set, for λ > 0, ϕλ(x) = (πλ)
n/2 exp{−|x|2/λ}, the following limit exists

I (u) = lim
λ→0

∫

Rn
|∇(u ∗ϕλ)|dx,

and that I (u) is finite if and only if the distributional gradient of u is an Rn -valued measure D u with

finite total variation. Moreover, if this is the case, I (u) = |D u|(Rn). If u is the characteristic function

of a measurable set A, then De Giorgi proved that I (u) is the perimeter of A in the sense of Caccioppoli,

i.e.

P (A) = inf

¨

liminf
h→∞

P (Ah ) : ∂ Ahpolyhedral, lim
h→∞

L n(Ah∆A) = 0

«

,

where the perimeter of the approximating polyhedra Ah is defined in an elementary way.

Finally, in 1964, M. Miranda introduced the quantity V (u,Ω) of Equation (3.3) in order to charac-

terise the functions u ∈ L1
loc(Ω) whose distributional gradient is a measure [Miranda(1964)].

3.1 Functions of Bounded Variation

The standard definition of Bounded Variation involve the distributive derivatives and Radon measure

but the true link between measure theory and functional analysis is inside Riesz Theorem.
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Definition 3.3 (Function of Bounded Variation). Let u ∈ L1(Ω) and Ω a generic open set in Rn : we

say that u is a function of Bounded Variation in Ω if the distributional derivative of u is representable

by a finite Radon measure in Ω, i.e. if
∫

Ω
u∇ϕ =−

∫

Ω
ϕ dD u, ∀ϕ ∈C∞c (Ω),

or, in components,
∫

Ω
u
∂ ϕ

∂ xi

dx =−
∫

Ω
ϕ dDi u, ∀ϕ ∈C∞c (Ω), i = 1, . . . , n, (3.1)

for someRn -valued measure D u = (D1u, . . . , Dn u) in Ω. The vector space of all functions of Bounded

Variation in Ω is denoted by BV(Ω).

Remark 3.4. A smoothing argument shows that the integration by parts in Equation (3.1) is still true

for any ϕ ∈C 1
c (Ω), or even for Lipschitz functions ϕ with compact support in Ω. So Equation (3.1)

can be summarized into a single one by writing
∫

Ω
u divϕ dx =−

n
∑

i=1

∫

Ω
ϕi dDi u, ∀ϕ ∈ [C 1

c (Ω)]
n .

We will use the same notation also for functions u ∈ [BV(Ω)]m : in this case, D u is a m× n matrix of

measures Di uα in Ω satisfying:
∫

Ω
uα
∂ ϕ

∂ xi

dx =−
∫

Ω
ϕ dDi uα, ∀ϕ ∈C 1

c (Ω), i = 1, . . . , n; α= 1, . . . , m,

or equivalently,

m
∑

α=1

∫

Ω
uα divϕα dx =−

m
∑

α=1

n
∑

i=1

∫

Ω
ϕαi dDi uα, ∀ϕ ∈ [C 1

c (Ω)]
mn . (3.2)

Remark 3.5. The Sobolev Space W1,1(Ω) is contained in BV(Ω): for any u ∈W1,1(Ω) the distributional

derivative is given by∇uL n . This inclusion is strict: there exist functions u ∈ BV(Ω) such that D u

is singular with respect to L n , for instance, the Heavyside function χ(0,∞), whose distributional

derivative is the Dirac measure δ0 /∈ L1, belongs to BV((0,∞)) \W1,1((0,∞)).

Proposition 3.6 (Properties of D u). Let u ∈ [BVloc(Ω)]
m . Then

• if D u = 0, u is (equivalent to a) constant in any connected component of Ω;

• for any locally Lipschitz function ψ :Ω→R the function uψ belongs to [BVloc(Ω)]
m and

D(uψ) =ψD u +(u ⊗∇ψ)L n .

One of the main advantages of the BV space it that it includes, unlike Sobolev spaces, characteristic

functions of sufficiently regular sets and, more generally, piecewise smooth functions.
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Example 3.7. Let Ω⊂R2 be a bounded open set and let us assume the existence of pairwise disjoint

sets with piecewise C 1 boundary {Ωi}1≤i≤p such that

p
⋃

i=1

Ωi ⊂Ω⊂
p
⋃

i=1

Ωi .

If ui ∈C (Ωi ), we can define u :Ω→R to be equal to ui on any subdomain Ωi , and define it arbitrarily

on the remaining negligible set Σ. By applying the Gauss-Green Theorem to any domain Ωi , for

i = 1, . . . , p, we find
∫

Ωi

u divϕ dx =−
∫

∂ Ωi

ui 〈ϕ, νi 〉dH
1−

∫

Ωi

〈∇ u,ϕ〉dx, ∀ϕ ∈
h

C 1(Ωi )
i2

where νi is the outer unit normal toΩi . Adding with respect to i these identities we find that u ∈ BV(Ω),

with D u given by
p
∑

i=1

ui νiH
1 ¬ (Ω∩ ∂ Ωi )+∇ uL 2.

Definition 3.8 (Variation). Given u ∈ [L1
loc(Ω)]

m the variation of u is:

V (u,Ω) = sup

¨

∫

Ω
u divϕ dx : ϕ ∈ [C 1

c (Ω)]
n , ‖ϕ(x)‖∞ ≤ 1

«

, (3.3)

or, generally speaking,

V (u,Ω) = sup

¨ m
∑

α=1

∫

Ω
uα divϕα dx : ϕ ∈ [C 1

c (Ω)]
mn , ‖ϕ(x)‖∞ ≤ 1

«

,

Integration by parts proves that V (u,Ω) =
∫

Ω
|∇ u|dx if u is continuously differentiable in Ω.

Remark 3.9. A function u ∈ [L1(Ω)]m belongs to [BV(Ω)]m if and only if V (u,Ω)<∞.

Property 3.10 (Properties of the variation). We summarize some useful properties.

• Lower semicontinuity: u 7−→V (u,Ω) is lower semicontinuous in the [L1
loc(Ω)]

m topology because

u 7−→
m
∑

α=1

∫

Ω
uα divϕα dx

is continuous in the [L1
loc(Ω)]

m topology for any choice of ϕ ∈ [C 1
c (Ω)]

mn . So

V (u,Ω)≤ liminf
h→∞

V (uh ,Ω).

• Additivity: V (u,A) is defined for any open set A⊂Ω (with ϕ supported in A) that

eV (u,B) = inf{V (u,A) : A⊃ B , A open}, B ∈B(Ω)

extends V (u, · ) to a Borel measure in Ω.
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• Locality: the mapping u 7−→V (u,A) is local, i.e. V (u,A) =V (v,A) if u ≡ v L n -a.e. in A⊂Ω.

• Convexity: given two maps u1 7−→V (u1,Ω), u2 7−→V (u2,Ω) and t ∈ [0,1], then

V (t u1+(1− t )u2,Ω)≤ tV (u1,Ω)+ (1− t )V (u2,Ω).

• One homogeneous: V (t u,Ω) = tV (u,Ω).

Remark 3.11. Since u 7−→V (u,Ω) is lower semicontinuous in the [L1
loc(Ω)]

m topology, this provides

a useful method of showing that some function u ∈ [L1(Ω)]m belongs to [BV(Ω)]m : one needs only

to approximate u ∈ [L1
loc(Ω)]

m by functions {uh}h∈N whose variations V (uh ,Ω) are equibounded.

Proposition 3.12 (Variation of BV(Ω) functions). Let u ∈ [L1(Ω)]m . Then, u belongs to [BV(Ω)]m

if and only if V (u,Ω) <∞. In addition, V (u,Ω) coincides with |D u|(Ω) for any u ∈ [BV(Ω)]m and

u 7−→ |D u|(Ω) is lower semicontinuous in [BV(Ω)]m with respect to the [L1
loc(Ω)]

m topology.

Proof. If u ∈ [BV(Ω)]m we can estimate the supremum defining V (u,Ω) observing that
m
∑

α=1

∫

Ω
uα divϕα dx =−

n
∑

i=1

m
∑

α=1

∫

Ω
ϕαi dDi uα

for any ϕ ∈ [C 1
c (Ω)]

mn . Since in the computation of V (u,Ω) we require that ‖ϕ‖∞ ≤ 1, from

Proposition 1.30 we infer that

V (u,Ω)≤ |D u|(Ω)<∞.

Conversely, if V (u,Ω)<∞ a homogeneity argument shows that
�

�

�

�

�

m
∑

α=1

∫

Ω
uα divϕα dx

�

�

�

�

�

≤V (u,Ω)‖ϕ‖∞, ∀ϕ ∈ [C 1
c (Ω)]

mn .

Since [C 1
c (Ω)]

mn is dense in [C0(Ω)]
mn , we can find a continuous linear functional L on [C0(Ω)]

mn

coinciding with

ϕ 7−→
m
∑

α=1

∫

Ω
uα divϕα dx

on [C 1
c (Ω)]

mn and satisfying ‖L‖ ≤ V (u,Ω). By Riesz Theorem, there exists a Rmn -valued finite

Radon measure µ= (µαi ) such that ‖L‖= |µ|(Ω) and

L(ϕ) =
n
∑

i=1

m
∑

α=1

∫

Ω
ϕαi dµαi , ∀ϕ ∈ [C0(Ω)]

mn .

From Equation (3.2) and the identity
m
∑

α=1

∫

Ω
uα divϕα dx =

n
∑

i=1

m
∑

α=1

∫

Ω
ϕαi dµαi , ∀ϕ ∈ [C 1

c (Ω)]
mn

we obtain that u ∈ [BV(Ω)]m , D u =−µ and

|D u|(Ω) = |µ|(Ω) = ‖L‖ ≤V (u,Ω).

Finally, the lower semicontinuity of u 7−→ |D u|(Ω) follows directly from Property 3.10.
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Remark 3.13. |D u|(Ω) will be sometimes called the variation of u ∈Ω and this notation will be used

for BV(Ω) functions only.

Remark 3.14. The space [BV(Ω)]m , endowed with the norm

‖u‖BV(Ω) =
∫

Ω
|u|dx + |D u|(Ω),

is a Banach space, but the norm-topology is too strong for many applications. Indeed, even for m = 1,

continuously differentiable functions are not dense in BV(Ω). However [BV(Ω)]m can be approximated

in the [L1(Ω)]m topology, by smooth functions whose gradients are bounded in [L1(Ω)]m . This is a

refinement of the classical Meyers-Serrin Theorem for Sobolev spaces.

Theorem 3.15 (Approximation by smooth functions). Let u ∈ [L1(Ω)]m . Then u ∈ [BV(Ω)]m if and

only if there exists a sequence {uh}h∈N of functions in [C∞(Ω)]m such that uh → u in [L1(Ω)]m and

satisfying

lim
h→∞
|D uh |(Ω) = lim

h→∞

∫

Ω
|∇ uh |dx→

∫

Ω
|∇ u|dx = |D u|(Ω)<∞.

Since | · |1 is not a strictly convex norm, problems arise in many proofs where a smoothing argument,

involving the Reshetnyak continuity Theorem, is used: for this reason the results stated here involve

vector BV functions, since not all of them can be directly deduced from the corresponding scalar ones.

Theorem 3.16 (Reshetnyak, lower semicontinuity). Let Ω be an open subset of Rn and µ, µh be

Rm -valued finite Radon measures in Ω; if µh →µ weakly-∗ in Ω, then
∫

Ω
u
�

x,
µ

|µ|
(x)
�

d|µ|(x)≤ liminf
h→∞

∫

Ω
u
�

x,
µh

|µh |
(x)
�

d|µh |(x)

for every lower semicontinuous function u :Ω×Rm→ [0,∞], positively 1-homogeneous and convex in

the second variable.

Theorem 3.17 (Reshetnyak, continuity). Let Ω, µh , µ as in Theorem 3.16; if |µh |(Ω)→ |µ|(Ω) then

lim
h→∞

∫

Ω
u
�

x,
µh

|µh |
(x)
�

d|µh |(x) =
∫

Ω
u
�

x,
µ

|µ|
(x)
�

d|µ|(x),

for every continuous and bounded function u :Ω× Sm−1→R.

As consequence of Theorem 3.15, BV(Ω)∩ L∞(Ω) is an algebra: if u i (i = 1,2) belong to this space,

a simple truncation argument in conjunction with Theorem 3.15 shows that we can find sequences

{u i
h}h∈N of smooth functions such that {|D u i

h |(Ω)}h∈N converges to |D u i |(Ω) and {‖u i
h‖∞}h∈N con-

verges to ‖u i‖∞ for i = 1,2. Since the functions vh = u1
h u2

h converge to v = u1u2, passing to the limit

as h→∞ in the inequality
∫

Ω
|∇vh |dx ≤ ‖u1

h‖∞
∫

Ω
|∇ u2

h |dx + ‖u2
h‖∞

∫

Ω
|∇ u1

h |dx

we obtain that v belongs to BV(Ω)∩ L∞(Ω) and

|Dv |(Ω)≤ ‖u1‖∞|D u2|(Ω)+ ‖u2‖∞|D u1|(Ω).
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3.2 Convergence in BV space

Definition 3.18 (Weak-∗ convergence). Let u, uh ∈ [BV(Ω)]m . We say that {uh}h∈N weakly-∗ con-

verges in [BV(Ω)]m to u if {uh}h∈N converges to u in [L1(Ω)]m and {D uh}h∈N weakly-∗ converges to

D u in Ω, i.e.

lim
h→∞

∫

Ω
ϕ dD uh =

∫

Ω
ϕ dD u, ∀ϕ ∈C0(Ω). (3.4)

Remark 3.19. We dont’t use the weak convergence in [BV(Ω)]m because the dual space of BV is

hard to characterize. However, it can be proved that BV is the dual of a separable space and, at least

for sufficiently regular domains, the convergence stated in Equation (3.4) corresponds to weak-∗

convergence in the usual sense.

Proposition 3.20. Let {uh}h∈N ⊂ [BV(Ω)]m . Then {uh}h∈N weakly-∗ converges to u in [BV(Ω)]m if

and only if {uh}h∈N is bounded in [BV(Ω)]m and converges to u in [L1(Ω)]m .

Definition 3.21 (Strict convergence). Let u, uh ∈ [BV(Ω)]m . We say that {uh}h∈N strictly converges

in [BV(Ω)]m to u if {uh}h∈N converges to u in [L1(Ω)]m and the variations |D uh |(Ω) converges to

|D u|(Ω) as h→∞.

Remark 3.22. The following formula is a distance in [BV(Ω)]n , inducing strict convergence (and

therefore weak-∗ convergence, the opposite is not true):

d (u, v) =
∫

Ω
|u − v |dx +

�

�|D u|(Ω)− |Dv |(Ω)
�

�.

Example 3.23. The function

uh =
sin(h x)

h

weakly-∗ converge to 0 in BV(0,2π), but the convergence is not strict because |D uh |(0,2π) = 4 for

any h ≥ 1.

Proposition 3.24. If {uh}h∈N ⊂ [BV(Ω)]m strictly converges to u, and f : Rmn → R is a continuous

and positively 1-homogeneous function, we have

lim
h→∞

∫

Ω
ϕ f

�

D uh

|D uh |

�

d|D uh |=
∫

Ω
ϕ f

�

D u
|D u|

�

d|D u|,

for any bounded continuous function ϕ :Ω→R. As a consequence, the measures

f
�

D uh

|D uh |

�

|D uh |
∗−* f

�

D u
|D u|

�

|D u|, in Ω;

in particular,

|D uh |
∗−* |D u| and |D uαh |

∗−* |D uα|, ∀α ∈ {1, . . . , m}.



52 3. Functions of Bounded Variation

3.3 Approximate continuity and differentiability

Since a BV function u of n > 1 variables doesn’t have good representatives as in dimension 1, we need

the notions of weak continuity and differiability.

Definition 3.25 (Approximate limit). Let u ∈ [L1
loc(Ω)]

m ; we say that u has an approximate limit at

x ∈Ω if there exists z ∈Rm such that

lim
ρ→0
−
∫

B(x,ρ)
|u(y)− z |dy = 0. (3.5)

The set Su of points where this property does not hold is called the approximate discontinuity set. For

any x ∈Ω \ Su the vector z , uniquely determined by Equation (3.5), is called approximate limit of u at

x and is denoted by eu(x).

Remark 3.26. In the following we say that u is approximately continuous at x of x /∈ Su and eu = u(x),

i.e. x is a Lebesgue point of u.

Aiming to recover the approximate discontinuity points, i.e. those corresponding to an approximate

jump discontinuity between two values a and b along a direction ν, we introduce the following

notation:






B+ρ (x, ν) =
�

y ∈ B(X ,ρ) : 〈y − x, ν〉> 0
	

B+ρ (x, ν) =
�

y ∈ B(X ,ρ) : 〈y − x, ν〉< 0
	

and

ua,b ,ν (y) =







a if 〈y, ν〉> 0

b if 〈y, ν〉< 0

for the two half balls contained in B(x,ρ) determined by ν and for the function jumping between a

and b along the hyperplane orthogonal to ν.

Definition 3.27 (Approximate jump points). Let u ∈ [L1
loc(Ω)]

m and x ∈ Ω. We say that x is an

approximate jump point of u if there exist a, b ∈Rm and ν ∈ Sn−1 such that a 6= b and

lim
ρ→0
−
∫

B+ρ (x,ν)
|u(y)− a|dy = 0, lim

ρ→0
−
∫

B−ρ (x,ν)
|u(y)− b |dy = 0. (3.6)

The triplet (a, b , ν), uniquely determined by Equation (3.6) up to a permutation of (a, b ) and a change

of sign of ν , is denoted by (u+(x), u−(x), νu (x)). The set of approximate jump points is denoted by Ju .

Definition 3.28 (Approximate differentiability). Let u ∈ [L1
loc(Ω)]

m and let x ∈Ω \ Su ; we say that u

is approximately differentiable at x if there exists a m× n matrix L such that

lim
ρ→0
−
∫

B(x,ρ)

|u(y)− eu(x)− L(y − x)|
ρ

dy = 0. (3.7)
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If u is approximately differentiable at x the matrix L, uniquely determined by Equation (3.7) is called

the approximate differential of u at x and denoted by∇ u(x). The set of approximate differentiability

points is denoted by Du .

Theorem 3.29 (Coarea formula in BV). For any open set Ω⊂Rn and u ∈ L1
loc(Ω) one has

V (u,Ω) =
∫ ∞

−∞
P ({x ∈Ω : u(x)> t}; Ω)dt .

In particular, if u ∈ BV(Ω), the set {u > t} has finite perimeter in Ω forL 1-a.e. t ∈R and

|D u|(B) =
∫ ∞

−∞
|Dχ{u>t}|(B)dt , D u(B) =

∫ ∞

−∞
Dχ{u>t}(B)dt

for any Borel set B ⊂Ω.

Theorem 3.30 (Calderón-Zygmund). Any function u ∈ [BV(Ω)]m is approximately differentiable at

L n -almost every point of Ω. Moreover, the approximate differential∇ u is the density of the absolutely

continuous part of D u, written as Da u, with respect toL n .

Definition 3.31 (Jump and Cantor parts). For any u ∈ [BV(Ω)]m , the measures

D j u =D s u ¬ Ju and D c u =D s u ¬ (Ω \ Su )

are called respectively the jump part of the derivative and the Cantor part of the derivative.

Theorem 3.32 (Federer-Vol’pert). Let u ∈ [BV(Ω)]m : then the discontinuity set isH n−1-rectifiable and

H n−1(Su \ Ju ) = 0. One has

D u =∇ u(x)dx +(u+(x)− u−(x))⊗ νu (x)dH
n−1 ¬ Ju +D c u

where D c u, the Cantor part of D u with respect the Lebesgue measure, vanishes on any set A with

H n−1(A)<∞. In other words, for any ϕ ∈C 1
c (Ω).

3.4 BV embedding

Theorem 3.33 (Convergence to the precise representative). Let u be a function in [BV(Ω)]m and define

the precise representative u∗ :Ω\ (Su \ Ju )→Rm of u to be equal to eu on Ω\Su and equal to [u++ u−]/2

on Ju . Then the mollified functions u ∗ρε pointwise converge to u∗ in its domain. In dimension 1, the

precise representative is the good representative.

Theorem 3.34. Let Ω⊂Rn be a bounded connected extension domain. Then
∫

Ω
|u − uΩ|dx ≤C |D u|(Ω), ∀u ∈ BV(Ω),

for some real constant C depending only on Ω and where uΩ of u ∈ L1(Ω) is the mean value defined as

uΩ =−
∫

Ω
u(x)dx =

1
|Ω|

∫

Ω
u(x)dx.



54 3. Functions of Bounded Variation

The isoperimetric inequality in Equation (2.45) in conjuction with the coarea formula are used to

prove the embedding Theorem of BV(Rn) in Ln/(n−1)(Rn).

Definition 3.35. Given p ∈ [1, n] we define

p∗ =











n p
n− 1

if p <N

∞ if p =N ,

under which 1∗ =∞ if n = 1 and n/(n− 1) otherwise.

Theorem 3.36 (Embedding theorem). LetΩ⊂Rn be a bounded extension domain. Then, the embedding

BV(Ω) ,→ L1∗(Ω) is continuous and the embeddings BV(Ω) ,→ Lp (Ω) are compact for 1≤ p < 1∗.

Remark 3.37 (Poincaré inequality). If Ω is a bounded connected extension domain, the continuity of

the embedding of BV(Ω) into L1∗(Ω) and Theorem 3.34, imply

‖u − uΩ‖Lp (Ω) ≤C |D u|(Ω), ∀u ∈ BV(Ω), 1≤ p < 1∗,

for some constant C depending only on Ω.

3.5 Compactness

Definition 3.38 (Extension domains). An open set Ω⊂Rn is an extension domain of ∂ Ω is bounded

and for any open set A⊃Ω and any m ≥ 1, there exists a linear and continuous extension operator

T : [BV(Ω)]m→ [BV(Rn)]m satisfying

• T u = 0 a.e. in Rn \A for any u ∈ [BV(Ω)]m ;

• |DT u|(∂ Ω) = 0 for any u ∈ [BV(Ω)]m ;

• for any p ∈ [1,∞] the restriction of T to [W 1, p (Ω)]m induces a linear continuous map between

this space and [W 1, p (Rn)]m .

Proposition 3.39. Any open set Ω with compact Lipschitz boundary is an extension domain.

Theorem 3.40 (Compactness). Every sequence {uh}h∈N ⊂ [BVloc(Ω)]
m satisfying

sup

¨

∫

A
|uh |dx + |D uh |(A) : h ∈N

«

<∞, ∀A⊂⊂Ω open,

admits a subsequence {uhk
}k∈N converging in [L1

loc(Ω)]
m to u ∈ [BVloc(Ω)]

m . If Ω is a bounded extension

domain and the sequence is bounded in [BV(Ω)]m we can say that u ∈ [BV(Ω)]m and that the subsequence

weakly-∗ converges to u.
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Remark 3.41. Theorem 3.40 is very useful in connextion with variational problems with linear

growth in the gradient. Since the Sobolev space W 1,1 has no similar compactness property, this

provides also a justification for the introduction of BV spaces in calculus of variation.

Theorem 3.42 (Rellich’s compactness theorem). Let Ω ⊂ Rn be a bounded domain with Lipschitz

boundary, and let {uh}h≥1 be a sequence of functions in BV(Ω) such that suph‖uh‖BV(Ω) <∞. Then there

exists u ∈ BV(Ω) and a subsequence {uhk
}k≥1 such that uhk

→ u (strongly) in L1(Ω) as k→∞.

3.6 Function of Bounded Variation in one dimension

Definition 3.43 (Pointwise variation). Let a, b ∈ R with a < b and I = (a, b ). For any function

u : I →Rm the pointwise variation pV (u, I ) of u in I is defined by

pV(u, I ) = sup

¨ n−1
∑

i=1

|u(ti+1)− u(ti )| : n ≥ 2, a < t1 < · · ·< tn < b

«

. (3.8)

If Ω ⊂ R is open, the pointwise variation pV(u,Ω) is defined by
∑

I pV(u, I ), where the sum runs

along all the connected components of Ω.

Remark 3.44. The mapping u 7−→ pV(u,Ω) is lower semicontinuous with respect to pointwise

convergence in I , being a supremum of continuous functionals. By additivity the same is true for

u 7−→ pV(u,Ω), for any open set Ω⊂R.

Remark 3.45. Any function u with finite pointwise variation in an interval I ⊂R is bounded, because

its oscillation can be estimated with pV(u, I ).

Clearly, pV(u,Ω) is very sensitive to modifications of the values of u even at a single point. This

suggest the following definition.

Definition 3.46 (Essential variation). We define the essential variation eV(u,Ω) of u in Ω as

eV(u,Ω) = inf
n

pV(v,Ω) : v = u L 1-a.e. in Ω
o

. (3.9)

Theorem 3.47. For any u ∈ [L1
loc(Ω)]

m the infimum in Equation (3.9) is achieved and the variation

V (u,Ω) coincides with the essential variation eV(u,Ω).

Remark 3.48. If u ∈ [BV(Ω)]m , then, by Proposition 3.12, V (u,Ω) = |D u|(Ω)<∞; since V (u,Ω) =

eV(u,Ω), there exists u, called good representative, in the equivalence class of u such that

pV(u,Ω) = eV(u,Ω) =V (u,Ω).

Theorem 3.49 (Good representatives). Let I = (a, b )⊂R be an interval and u ∈ [BV(I)]m . Let A be

the set of atoms of D u, i.e. t ∈A if and only if D u({t}) 6= 0. Then, the following statements hold:
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• there exists an unique c ∈Rm such that

u l (t ) = c +D u((a, t )), u r = c +D u((a, t ]), t ∈ I

are good representatives of u, the left continuous one and the right continuous one. Any other

function u : I →R is a good representative of u if and only if

u(t ) ∈
n

θu l (t )+ (1−θ)u r (t ) : θ ∈ [0,1]
o

, ∀t ∈ I ;

• any good representative u is continuous in I \A and has a jump discontinuity at any point of A:

u(t−) = u l (t ) = u r (t−) and u(t+) = u l (t+) = u r (t ), ∀t ∈A.

• any good representative u is differentiable atL 1-a.e. point of I . The derivative u ′ is the density of

D u with respect toL 1.

Corollary 3.50 (Monotone functions). Let u : (a, b )→R be a monotone function. Then u is differen-

tiable atL 1-a.e. t ∈ (a, b ) and

|u(b−)− u(a+)| ≥
∫ b

a
|u ′(t )|dt +

∑

t∈Γu

|u(t+)− u(t−)|,

where Γu is the discontinuity set of u.

Theorem 3.51. Let (a, b )⊂R be a bounded interval. Then the linear map

(c ,µ) 7−→ u(t ) = c +µ((a, t ))

established an isomorphism between the Banach spaces Rm × [M (a, b )]m and [BV(a,b)]m .

Remark 3.52. The equations defining u l and u r can be rephrased without mention of c :

u l (s)− u l (t ) =D u([t , s)), u r (s)− u r (t ) =D u((t , s]), a < t < s < b

and could be considered as the fundamental Theorem of Calculus in BV.

Definition 3.53 (Absolutely continuous functions). Let Ω⊂R be open and let u ∈ [L1(Ω)]m . We

say that u is absolutely continuous in Ω if u ∈ [BV(Ω)]m and D u is absolutely continuous with respect

toL 1. The vector space of absolutely continuous functions in Ω coincides with the Sobolev space

[W 1,1(Ω)]m .

Remark 3.54. In general, any measure µ on an open set Ω ⊂ R can be split into three parts, an

absolutely continuous one µa (with respect toL 1), a purely atomic one µ j , and a diffuse (i.e. without

atoms) singular one µc . To obtain this decomposition we first denote by A= {t ∈Ω :µ({t}) 6= 0} the
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set of atoms of µ (recall that A is at most countable), then we split µ into the absolutely continuous

part µa and the singular part µs , given by the Radon-Nikodým Theorem, and we define µ j =µs ¬A

and µc =µs ¬ (Ω \A). In this way we obtain

µ=µa +µs =µa +µ j +µc .

This decomposition of µ is unique and since the measures µa , µ j , µc are mutually singular we have

also |µ|= |µa |+ |µ j |+ |µc |. From the Theorem 1.55 we know that µs can also be represented by the

restriction of µ to theL 1-negligible set

S =
¨

t ∈Ω : lim
ρ→0

|µ|(B(t ,ρ))
ρ

=∞
«

containing A, hence we can describe these three measures in a more constructive way:

µa =µ ¬ (Ω \ S), µ j =µ ¬A, µc =µ ¬ (S \A).

According to this decomposition, we will say that u ∈ BV(Ω) is a jump function if D u = D j u, i.e.

is a purely atomic measure, and we will say that u is a Cantor function if D u =D c u, i.e. if D u is a

singular measure without atoms.

Theorem 3.55 (Decomposition of BV(Ω) functions). Let Ω= (a, b )⊂R be a bounded interval. Then,

any u ∈ [BV(Ω)]m can be represented by ua + u j + u c , where ua ∈ [W 1,1(Ω)]m , u j is a jump function

and u c is a Cantor function. The three functions are uniquely determined up to additive constants and

|D u|(Ω) = |D ua |(Ω)+ |D u j |(Ω)+ |D u c |(Ω)

=
∫ b

a
|u ′|dt +

∑

t∈A

|u(t+)− u(t−)|+ |D u c |(Ω),

where u is a good representative of u.

Remark 3.56. This decomposition of BV(Ω) functions is typical of the dimension one. No similar

result is true for BV(Ω) functions of two or more variables. See Example 3.63 for more details.

Example 3.57. An example of a function with absolutely continuous derivative is given by any

function u ∈W 1,1(Ω) or, more obviously, u ∈ C 1(Ω). An example of a function with derivative a

pure jump is given by χA, A a Caccioppoli set.

Example 3.58 (Jump function). Given any sequence {dh}h∈N ⊂ (0,1), one can define

u(t ) =
∑

{h:dh<t}
2−h .

The distributional derivative of u is the positive finite measureµ=
∑

h 2−hδdh
, because u(t ) =µ((0, t ))

for any t ∈ (0,1). In general, the distributional derivative of a jump function can be reconstructed by

left and right limits of a good representative, as Theorem 3.49 shows.
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Example 3.59 (Cantor functions). These functions (we are talking of good representatives) are con-

tinuous in their domain and differentiable, with 0 derivative, almost everywhere. This shows that,

unlike absolutely continuous functions and jump functions, the derivative of Cantor functions can be

seen only as measure, in the distributional sense, and cannot be recovered from the classical analysis

of the pointwise behaviour of the function, based on concepts like left limit, right limit and derivative.

The famous Cantor-Vitali function is an example of a function with derivative purely Cantorian. The

function is obtained as follows: Ω= (0,1) and we let u0(t ) = t , and for any n ≥ 0,

uh+1(t ) =























1
2 uh (3t ) 0≤ t ≤ 1

3

1
2

1
3 ≤ t ≤ 2

3

1
2 (uh (3t − 2)+ 1) 2

3 ≤ t ≤ 1.

(3.10)

Then, one checks that

sup
(0,1)
|uh+1− uh |=

1
2

sup
(0,1)
|uh − uh−1|=

1
2h
× 1

6

so that {uh}h≥1 is a Cauchy sequence and converges uniformly to some function u. This function

is constant on each interval the complement of the triadic Cantor set, which has zero measure in

(0,1). Hence, almost everywhere, its classical derivative exists and is zero. One can deduce that the

derivative D u is singular with respect to Lebesgue’s measure. On the other hand, it is continuous as a

uniform limit of continuous functions, hence D u has no jump part. In fact, D u =D c u, which in this

case, is the measureH ln2/ ln3 ¬D c/H ln2/ ln3(D c ).
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Figure 7: Cantor-Vitali function, also known as devil’s staircase.

The terminology of the decomposition is justified by the Cantor-Vitali function (see Example 3.59),

whose distributional derivative has no jump part and no absolutely continuous part. We also call
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Da u +D c u the diffusive part of the derivative and denote it by eD u. This decomposition of D u has

several motivations:

• theoretical: the different behaviour of the diffusive part and the jump part under left composition

with Lipschitz mapping;

• practical: we are interested in the integral functionals on BV and we want to identify the

absolutely continuous and the singular part of the energy (in some case a Cantor part).

3.7 Special functions of Bounded Variation

The Special functions of Bounded Variation have been singled out by E. De Giorgi and L. Ambrosio

in [De Giorgi and Ambrosio(1988)] as good candidates for setting a wide class of variational problems

where both volume and surface energies are involved.

Definition 3.60 (SBV space). We say that u ∈ BV(Ω) is a special function with bounded variation,

and we write u ∈ SBV(Ω), if the Cantor part of its derivative D c u is zero. So we obtain

D u =Da u +D j u =∇ uL n +(u+− u−)νuH
n−1 ¬ Ju , ∀u ∈ SBV(Ω). (3.11)

Remark 3.61. SBV(Ω) is a proper subspace of BV(Ω) if Ω ⊂ R: in fact, the Cantor-Vitali function

(3.10) belongs to BV((0,1)) \ SBV((0,1)). Considering Cantor-Vitali like functions which depend only

on one variable it us easy to realize that SBV(Ω) is a proper subspace of BV(Ω) for any open setΩ⊂Rn .

Unfortunately∇ u and (u+, u−, νu ) are not sufficient to build the distributional derivative of a general

BV(Ω) function.

Remark 3.62. W1,1(Ω)⊂ SBV(Ω)⊂ BV(Ω) and both inclusions are strict. In fact, SBV(Ω) contains

bounded piecewise Sobolev functions in a very weak sense. For example, if u = χA and |A| <∞,

0< P (A; Ω)<∞ then u ∈ SBV(Ω) but u is not a Sobolev function because D u = νAH n−1 ¬∂ ∗A. So,

u ∈W1,1(Ω) ⇐⇒ H n−1(Su ) = 0, ∀u ∈ SBV(Ω).

Example 3.63 (Square root example). We show that the decomposition (3.11) doesn’t hold for dimen-

sions higher that 1. Let S = (−∞, 0)×{0} ⊂R2 be the left x axis and let u :R2\S→R be defined, in po-

lar coordinates (ρ,θ) ∈ (0,∞)×(−π,π), bypρ sin(θ/2). Then, it is easy to check that u ∈ SBVloc(R2),

with Su = Ju = S \{0}. If it were possible to decompose u in the form u = ua+ u j with ua ∈W1,1
loc
(R2)

and Da u j = 0, we would obtain that∇(u − ua) =∇ u j = 0. Since (u − ua) ∈W1,1
loc
(R2 \ S) and R2 \ S

is connected, we conclude that u − ua is (equivalent to a) constant. Hence, u = ua + c ∈W1,1
loc
(R2), a

contradiction.
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Since, by definition, D c u =D s u ¬ (Ω \ Su ), we can say that u belongs to SBV(Ω) if and only if D s u

is concentrated on Su . More generally:

Proposition 3.64. Any u ∈ BV(Ω) belongs to SBV(Ω) if and only if D s u is concentrated on a Borel set

σ -finite with respect toH n−1.

Theorem 3.65. SBV(Ω) is a closed subspace of BV(Ω).

Proof. If I is finite or countable, ui ∈ SBV(Ω) for any i ∈ I and
∑

i∈I ui converges to u ∈ BV(Ω) in

the BV norm, then D u =
∑

i D ui . Since
∑

i Da ui is absolutely continuous with respect toL n and
∑

i D s ui is singular, we have

Da u =
∑

i∈I

Da ui , D s u
∑

i∈I

D s ui ,

and since D s u is concentrated on
⋃

i Sui
, we conclude that u ∈ SBV(Ω). This proves that SBV(Ω) is a

closed subspace of BV(Ω).

Proposition 3.66. LetΩ⊂Rn be open and bounded, K ⊂Rn closed and assume thatH n−1(K∩Ω)<∞.

Then, any function u : Ω→ R that belongs to L∞(Ω \K)∩W 1,1(Ω \K) belongs also to SBV(Ω) and

satisfiesH n−1(Su \K) = 0.

Theorem 3.67 (Closure of SBV). Letϕ : [0,∞)→ [0,∞), θ : [0,∞)→ [0,∞) be lower semicontinuous

increasing functions and assume that

lim
t→∞

ϕ(t )
t
=∞, lim

t→0

θ(t )
t
=∞.

Let Ω⊂Rn be open and bounded, and let {uh}h∈N ⊂ SBV(Ω) such that

sup
h

¨

∫

Ω
ϕ(|∇ uh |)dx +

∫

Juh

θ(|u+h − u−h |)dH
n−1

«

<∞. (3.12)

If {uh}h∈N weakly-∗ converges in BV(Ω) to u, then u ∈ SBV(Ω), the approximate gradients∇ uh weakly

converge to∇ u in [L1(Ω)]n , D j uh weakly-∗ converge to D j u in Ω and
∫

Ω
ϕ(|∇ u|)dx ≤ liminf

h→∞

∫

Ω
ϕ(|∇ uh |)dx, if ϕ is convex,

∫

Ju

θ(|u+− u−|)dH n−1 ≤ liminf
h→∞

∫

Juh

θ(|u+h − u−h |)dH
n−1, if θ is concave.

Theorem 3.68 (Compactness of SBV). Let ϕ, θ, Ω as in Theorem 3.67. Let {uh}h∈N ⊂ SBV(Ω) be

satisfying Equation (3.12) and assume, in addition, that ‖uh‖∞ is uniformly bounded in h. Then, there

exists a subsequence {uhk
}k∈N weakly-∗ converging in BV(Ω) to u ∈ SBV(Ω).



3.8 Boundary Trace 61

3.8 Boundary Trace

In many situations one needs to study functions arising form cutting and pasting two functions

u, v ∈ [BV(Ω)]m ; denoting the cut region by A, one needs to know whether w = uχA+ vχΩ\A is still

in [BV(Ω)]m , and if this is the case a formula for Dw is needed. We prove that w is a BV function if

A is a set of finite perimeter and the difference u+
∂ ∗A
− v−

∂ ∗A
between the interior trace of u and the

exterior trace of v is summable on ∂ ∗A. This summability condition is of course satisfied if u and v

are globally bounded and if A is sufficiently regular.

Theorem 3.69 (Traces on interior rectifiable sets). Let u be a function in [BV(Ω)]m and let Γ ⊂Ω be

a countablyH n−1-rectifiable set oriented by ν . Then, forH n−1-almost every x ∈ Γ there exist u+Γ (x),

u−Γ (x) in Rm such that


















lim
ρ→0
−
∫

B+ρ (x,ν(x))
|u(y)− u+Γ (x)|dy = 0

lim
ρ→0
−
∫

B−ρ (x,ν(x))
|u(y)− u−Γ (x)|dy = 0.

Moreover, D u ¬ Γ =
�

u+Γ − u−Γ
�

⊗ νH n−1 ¬ Γ .

Theorem 3.70. Let u, v ∈ [BV(Ω)]m and let A be a set of finite perimeter in Ω, with ∂ ∗A∩Ω oriented

by νA. Let u+
∂ ∗A

, v−
∂ ∗A

be given forH n−1-a.e. x ∈ ∂ ∗A∩Ω by Theorem 3.69. Then

w = uχA+ vχΩ\A ∈ [BV(Ω)]m ⇐⇒
∫

∂ ∗A∩Ω
|u+
∂ ∗A− v−

∂ ∗A|dH
n−1 <∞.

If w ∈ [BV(Ω)]m , the measure Dw is representable by

Dw =D u ¬A1+(u+
∂ ∗A− v−

∂ ∗A)⊗ νAH
n−1 ¬ (∂ ∗A∩Ω)+Dv ¬A0.

Example 3.71. Let u1, u2 ∈ W1,1(Ω) ∩ L∞(Ω) and let A be a set of finite perimeter in Ω. Then,

Theorem 3.70 implies that the function u = u1χA+ u2χΩ\A belongs to SBV(Ω) and satisfies

D u =
�

∇ u1χA+∇ u2χΩ\A
�

L n +(eu1− eu2)νAH
n−1 ¬ (Ω∩ ∂ ∗A).

In fact, since Su1
and Su2

are bothH n−1-negligible, the approximate limits eu1 and eu2 respectively

coincideH n−1-a.e. on ∂ ∗A with the interior trace (u1)
+
∂ ∗A

and the exterior trace (u2)
−
∂ ∗A

given by

Theorem 3.69. Assuming that eu1− eu2 isH n−1 ¬ (Ω∩ ∂ ∗A) summable, the L∞ assumption on u1, u2

can be dropped.
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3.9 Caccioppoli Partitions

Definition 3.72 (Caccioppoli partition). Let Ω ∈Rn be an open set and I ⊂N; we say that a partition

{Ai}i∈N of Ω is a Caccioppoli partition if

∑

i∈I

P (Ai ; Ω)<∞.

We say that a Caccioppoli partition {Ai}i∈I is ordered if |Ai | ≥ |Aj | whenever i ≤ j . Given a

H n−1-rectifiable set K ⊂Ω, we say that a Caccioppoli partition {Ai}i∈I of A is subordinated to K if,

∀i ∈ I , ∂ ∗Ai ⊂K up to aH n−1-negligible set.

Theorem 3.73 (Compactness of Caccioppoli partition). Let {Ai ,h}i∈I , with h ∈ N, be Caccioppoli

partitions of a bounded open set Ω with Lipschitz boundary such that

sup
i∈I

n

P (Ai ,h ; Ω) : h ∈N
o

<∞.

Then, if either I is finite or the partitions are ordered, there exists a Caccioppoli partition {Ai}i∈I and a

subsequence {hk}k∈I such that {Ai ,hk
}i∈I converges in measure to Ai for any i ∈ I .

Definition 3.74 (Piecewise constant functions). We say that u :Ω→Rm is piecewise constant in Ω if

there exists a Caccioppoli partition {Ai}i∈I of Ω and a collection {ti}i∈I ⊂Rm such that

u =
∑

i∈I

tiχAi
.

Theorem 3.75 (Characterization of piecewise constant functions). Let u ∈ [L∞(Ω)]m . Then, u is

(equivalent to) a piecewise constant function if and only if u ∈ [SBV(Ω)]m , D u is concentrated on Su

andH n−1(Su)<∞. Moreover, denoting by {Ai}i∈I the level sets of u and ti the associated values, i.e.

Ai = {x ∈ Ω : u(x) = ti}, we have u =
∑

i tiχAi
, ∂ ∗Ai ⊂ Su for all i up toH n−1 negligible sets and

2H n−1(Su ) =
∑

i∈I P (Ai ; Ω).

Theorem 3.76 (Compactness of piecewise constant functions). Let Ω be a bounded open set with

Lipschitz boundary and let {uh}h∈N ⊂ [SBV(Ω)]m be a sequence of piecewise constant functions such that

‖uh‖∞+H
n−1(Suh

) is uniformly bounded.

Then, there exists a subsequence {uhk
}k∈N converging in L1 to a piecewise constant function.

3.10 Piecewise roto-translations

Definition 3.77 (Piecewise roto-translations). We say that u ∈ SBV(Ω) is a piecewise roto-translation

in Ω if there exists a Caccioppoli partition {Ai}i∈I of Ω and Ri ∈ SO(n) (the special orthogonal group
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of all rotations in Rn), ti ∈Rn , i ∈ I , such that, for a.e. x ∈Ω,

u(x) =
∑

i∈I

(Ri x + ti )χAi
(x).

Theorem 3.78 (Compactness of piecewise roto-translations). Let {uh}h∈N ⊂ SBV(Ω) be a sequence of

piecewise roto-translations associated with Caccioppoli partitions {Ai ,h}i∈I such that

‖uh‖∞+
∑

i∈Ih

P (Ai ,h ; Ω) is uniformly bounded.

Then, there exists a subsequence {uhk
}k∈N converging in L1 to a piecewise roto-translation.

Theorem 3.79 (Chambolle, Giacomini, Ponsiglione). If u ∈ SBV(Ω) is such thatH n−1(Su )<∞ and

∇ u(x) ∈ SO(n) forL n -a.e. x ∈Ω, then there exists a Caccioppoli partition {Ai}i∈I subordinated to Su

such that

u =
∑

i∈I

(Ri x + ti )χAi

where Ri ∈ SO(n) and ti ∈Rn .

Remark 3.80. Theorem 3.79 provides an interesting characterization of piecewise roto-translations

that is useful to study the links between rigidity and elastic energy in the context of fracture mechanics.

This result motivates the use of SBV and the Caccioppoli partitions as the appropriate tools for

representing and manipulating piecewise roto-translations.





CHAPTER 4
The Inpainting problem

This chapter aims to motivate the previous study of BV space function theory, showing that the

functional and geometric properties of this space are useful to model real problems. These functions

appear as L1 limits of Sobolev (and even more regular) functions when dealing with integral functionals

with a linear growth in the gradient. Meanwhile, the level sets of a BV function are all (generally) sets of

finite perimeter. Moreover, the SBV space, a special subset of BV space function, appears as the natural

setting where to study variational models with both volume and surface energy density to be taken

into account. To deepen this topics we refer to [Ambrosio et al.(2000), Maggi(2012), Giusti(1977)].

Example 4.1 (Sets with prescribed curvature). The simplest problem where volume and surface

energies compete is probably the so called prescribed curvature problem:

min
A

¨

∫

A
g (x)dx +H n−1(∂ A) : a ⊂Rn

«

,

where g ∈ L1(Rn) is given. In this problem, if g (x) < 0 in some region F , the two terms can have

opposite sign, and, if F is not too irregular, it may be convenient to include F in A to decrease the

value of the functional. The terminology for this problem can be explained through the first variation:

if g is continuous at a regular point x ∈ ∂ A, and A minimises the functional, then the equation

H(x) = g (x)νA(x)

holds, where H is the mean curvature vector of ∂ A and νA is the outer normal to A. To solve this

problem, the classical framework to be used comes from the sets of finite perimeter.

Example 4.2 (Optimal partitions). A generalization of the prescribed mean curvature problem, is

the optimal partition problem: given Ω ∈Rn and g ∈ L∞(Ω), one looks for the following:

min
K ,u

¨

H n−1(K ∩Ω)+α
∫

Ω\K
|u − g |2 dx

«
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among all the closed sets K ⊂Rn and all the functions u that are constant in the connected components

ofΩ\K . This minimum problem corresponds to the best piecewise constant approximation of g , with

control (whose strenght depends on α) on the total area of the discontnuity set K , and is also interesting

in image segmentation. Notice that if K is given then obviously the value of u in each connected

component is the mean value of g therein, and giving u in turn determines K as discontinuity set,

so that the unknown variables K , u can reduce the only one, and the above problem can be easily

rephrased in SBV(Ω) looking for the

min
u

¨

H n−1(Su )+α
∫

Ω
|u − g |2 dx

«

among all the piecewise constant functions u ∈ SBV(Ω).

Example 4.3 (Mumford-Shah image segmentation problem). Assume that a bounded open setΩ⊂Rn ,

a function g ∈ L∞(Ω) and a strictly positive parameters α,β are given; the Mumford-Shah functional

is defined by

J (K , u) =
∫

Ω\K

�

|∇ u|2+α(u − g )2
�

dx +βH n−1(K ∩Ω).

The problem is to minimize J in the set of admissible pairs

A =
¨

J (K , u) : K ⊂Ω closed, u ∈W 1,2
loc
(Ω \K)

«

.

Example 4.4 (Rudin-Osher-Fatemi for image denoising and deblurring).

min
u
λ
∫

Ω
|D u|dx +

1
2

∫

Ω
|u(x)− g (x)|2 dx.

Many other problems arising in real applications can be set in BV space.

4.1 State of the art

Among all possible applications of BV theory, one of the most recent and challenging problem is

refereed to inpainting problems. This is the topic we choose to depeen. The image inpainting problem

(or image completion or disocclusion) for image processing can be stated as the situation in which a

corrupted image is given and we want to restore the data missing with the only available data captured

outside the region to be inpainted. An example can be found in Figure 8. Today, inpainting is a very

common problem in film restoration and image retouching, so many software in image editing have

specific plug-in or controls to manage with this problem. The term digital inpainting was introduced

into image processing by Bertalmio, Sapiro, Caselles and Ballester in [Ballester et al.(2001)] and it is a

very famous word among museum conservators and restoration artists: this is refereed to the practice

of retouching or recovering damaged ancient paintings. The goal is to remove the cracks or recover
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the missing patches in an undetectable manner. The authors were the first to apply the PDE method

to inpainting, introducing an innovative third order PDE.

(a) Original. (b) Inpainting domain marked. (c) Result.

Figure 8: Example of inpainting problem from [Bornemann and März(2007)].

Remark 4.5. Inpainting problem is essentially an an interpolation problem where the degree of the

function to be interpolated is unknown. What makes image interpolation highly non trivial is the

complexity of image functions. For example, in 1D, we can know the values (or even the derivatives)

of a function f at a− h and a+ h. If f is smooth, then as h→ 0, we can apply smooth interpolants

such as Lagrange or Hermite’s to infer the values of f on (a− h,a+ h) with certain guaranteed degree

of precision. But for a BV function f , all such smooth interpolants fail to work properly no matter

how small h is, since a widhless jump can always occur in (a − h,a + h). This is speciality of BV

functions: by the TV (total variation) Radon measure, a single point is allowed to have nonzero mass,

which makes the corrisponding interpolation problem ill-posed in general.

Remark 4.6. The aim of inpainting is not to recover the true occluded background but to create a

new one which looks natural to a human observer: that’s way the inpainting problem is related to a

psychology problem called amodal completion, or illusory contours. For example, in Kanizsa’s Triangle

of Figure 9, spatially separate fragments give the impression of illusory contours of a triangle.

Figure 9: Kanizsa’s Triangle.
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Some attempts has been proposed to solve inpainting problem: for example a geometric-oriented

approach was firstly proposed in [Masnou and Morel(1998)], from which Figure 10 is taken, while

texture-oriented approach is the core of [Efros and Leung(1999)].

Geometry oriented. The main idea is to model images as functions with some degree of smoothness,

expressed in terms of its total variation or the curvature of its level lines. Essentially, the boundary data

of the inpainting domain is used to interpolate and predict the geometric structure of the image where

unknown, providing a local methods, based on solving PDEs. These methods show good performance

in propagating smooth level lines or gradients, but fail in the presence of texture.

Figure 10: Occlusion with a possible connection of level lines by [Masnou and Morel(1998)].

Texture oriented. These methods model the texture as a two dimensional probabilistic graphical

model, in which the value of each pixel is conditioned by its neighbourhood. The value of each

target pixel x is copied from the center of a (square) patch in the sample image, chosen to match

the available portion of the patch centred at x. These methods are non-local and are called exemplar-

based: to determine the value at x, the whole image is scanned searching for a matching patch. The

exemplar-based approach can be stated as finding a correspondence map

ϕ : O→O c

which assigns to each location x in the inpainting domain O (a subset of the image domain Ω, usu-

ally a rectangle in R2) a corresponding location ϕ(x) ∈ O c = Ω \O, where the image is known

[Demanet et al.(2003)]. The filling-in strategy can be regarded as a greedy procedure (each hole pixel

is visited only once) for computing a correspondence map, but this is very sensitive to the order in

which the pixels are processed. This motivates the introduction of a variational formulation for

inpainting problem as the minimization of an energy functional in which the unknown variable is the
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correspondence map itself,

E(ϕ) =
∫

O

∫

Ωp

|bu(ϕ(x + h))− bu(ϕ(x)+ h)|2 dh dx, (4.1)

whereΩp is the patch domain, centred at (0,0), and bu is the known image defined in O c . The unknown

image is computed as u(x) = bu(ϕ(x)), for x ∈O. Thus, ϕ should map a pixel x and its neighbours in

such a way that the resulting patch is close to the one centred at ϕ(x). Unfortunately, the energy (4.1)

is highly non-convex and no effective way to minimize it is known [Aujol et al.(2010)].

It is possible to introduce a relaxation of energy (4.1) considering the correspondence map as

auxiliary variable and the unknown equation is now determined as part of optimization process with

an alternating minimization scheme: this removes the constraint u(x) = bu(ϕ(x)):

E(u,ϕ) =
∫

eO

∫

eΩp

|u(x + h)− bu(ϕ(x)+ h)|2 dh dx,

where eO =O +Ωp refers to the set of centres of patches that intersect the inpainting domain O. We

will see later that this non-convex energy converges to a critical point.

In denoising and superresolution problems, the pixel values are estimated from many image locations

and this is equivalent to replace the correspondence map with a weight function

w :Ω×Ω→R,

withΩ being the image domain (usually a rectangle inR2). For each x, w(x, · )weights the contribution

of each image location to the estimation of x. In this context, [Gilboa and Osher(2007)] proposed the

following functional for non-local means denoising method:

Ew (u) =
∫

Ω

∫

Ω
w(x, y)(u(x)− u(y))2 dy dx,

where the weights w are considered as known and fixed through all iterations: this is not the case of

inpainting problem because weights are not available or directly linked with the image data known.

In this sense, the weights w are now considered as a variable of the problem and updated adaptively at

each iteration. Heuristically, one can say that the optimal similarity weights w converge to δ(y−ϕ(x))

where ϕ : eO→ eO c is the optimal correspondence map, with y ∈ eO c and x ∈ eO.

Other approaches. Other techniques have been proposed to solve the inpainting problem. In

[Starck et al.(2005)], two appropriate dictionaries are used: one for the representation of textures, and

the one for the natural scene parts assumed to be piecewise-smooth which produce very good results

for sparse inpainting domains. In [Hays and Efros(2007)], the image completion is performed with an

huge database of photographs gathered from the Web: the algorithm patches up holes in images by

finding similar regions in the database that are not only seamless but also semantically valid.
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We are now introducing some details about geometric and exemplar-based approach. Firstly, we

present the inpainting problem modelled with curvature and level lines of surrounding data by

[Chan et al.(2002)], then we present the most recent works [Arias et al.(2011), Arias et al.(2012)] and

the related results in order to get the state of the art in this important research field.

4.2 A geometry oriented approach: the Euler’s elastica

In 1744, Euler obtained the energy (4.2) studying the steady shape of a thin and torsion-free rod under

external forces: that’s how Euler’s elastica born.

Definition 4.7. Euler’s elastica is the equilibrium curve of the elasticity energy:

E2[γ ] =
∫

γ
(a+ bc2)ds , (4.2)

where ds denotes the arc length element, c(s ) the scalar curvature and a and b two positive constant

weights.

Remark 4.8. Since both arc length and curvature are intrinsic geometric features of a curve, the

elastica energy naturally extends to the curves living on a general Riemannian manifold M . If M is

embedded in a Euclidean spaceRn , then a curve γ on M can be expressed by the embedded coordinates

s → ~x(s) = (x1(s), . . . , xn(s)) .

Then, ~t = ∂ ~x/∂ s is the tangent and
∏

~x ∂ ~t/∂ s = c~n defines the curvature and
∏

~x is the orthogonal

projection from T~xRn to T~x M . For a general Riemannian manifold M , the intrinsic derivative ∂ ~t/∂ s

is defined by the Levi-Civita connection or covariant derivative.

By Calculus of Variation, from the energy formula (4.2), an elastica must satisfy the forth-order

equation:

2c′′(s)+c3(s) =
a
b
c(s),

or, more generally if the elastica lives on a Riemannian surface, there will be an extra term due to the

curving of the surface (the Gaussian curvature of the surface G):

2c′′(s)+c3(s)+ 2G(s)c(s) =
a
b
c(s),

Remark 4.9. Birkhoff and De Boor shown in [Birkhoff and de Boor(1965)] the link between elastica

and computer vision as the interpolation capability of elastica: such nonlinear splines, like classical

polynomial splines, are useful tools to complete the broken or occluded edges of objects in the 2D

projection of a 3D scene.
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Since digital inpainting is a sort of interpolation in 2D domain, we can start looking what an image

u0 looks like locally with a simple local patch D missing: we try to inpaint u0|D based on the available

information surrounding D. By checking the boundary data along D we can determine which class

u0|D belongs to (a class is a type of patch based on the complexity of expected local edge, see Figure

11), based on interpolation of boundary end points by elastica, instead of straight line segments.

Figure 11: Four different classes of situations from [Chan et al.(2002)].

The first step is to inpaint the missing edges (smooth, corner or T-junction) to reduce class E, C, T to

class H (more details in [Chan et al.(2002)]). Along the boundary, each end point can be represented

by (p, ~n), with p denoting its position and ~n the normal to the edge, which can be computed from

the available image outside the inpainting domain D .

After the feature edges have all been interpolated, all four classes of local image inpaintings are

essentially reduced to the inpainting of class H , the homogeneous patches. Such patches can also be

inpainted by having the broken isophotes interpolated by elasticas one by one from the boundary

information (like the algorithm proposed in [Masnou and Morel(1998)]).

Generically, one can assume that the missing smooth patch u0|D is regular in the sense that it lies

close to a regular point where∇ u0 is non-zero (or by first applying a small step of Gaussian diffusion).

Thus the isophotes of u0 on D are well defined and distinguishable, and each Γλ is uniquely labelled by

its gray level u0 ≡ λ.

The trace of each Γλ on the boundary tells the coupling rule of boundary pixels. Suppose p1, p2 ∈ ∂ Ω

share the same gray level λ, and the normals computed from the available image data outside D are

~n1, ~n2. Then we inpaint the λ-isophote Γλ by elastica Γ ′
λ
:

Γ ′λ = argmin
γλ`((p1,~n1),(p2,~n2))

∫

γλ

(a+ bc2)ds = argmin
γλ`((p1,~n1),(p2,~n2))

E2[γλ], (4.3)

where `means subjecting to the boundary conditions, i.e. γλ goes through p1 and p2, and γ̇λ ⊥ ~ni at

two ends. As λ varies according to the available boundary data u0, Equation (4.3) gives a family of
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(and theoretically infinitely many) elasticas. On the other hand, if we denote this bundle of elasticas by

F ′ = {Γ ′λ : 0≤ λ≤ 1},

then it is easy to see thatF ′ is also the minimizer of the following energy for all boundary admissible

curve bundlesF = {γλ : 0≤ γ ≤ 1}:

E[F ] =
∫ 1

0
E2[γλ]dλ, or more generally, Ew[F ] =

∫ 1

0
w(λ)E2[γλ]dλ, (4.4)

with some positive weight function w(λ). At this level, two problems can arise

1. Problem 1: two different elastica interpolants Γ ′
λ

and Γ ′µ, with λ 6= µ can meet inside the

inpainting domain D , while the original two isophotes never.

2. Problem 2: generally, it is not guaranteed that the elastica bundleF ′ = {Γ ′
λ

: 0≤ λ≤ 1} does

wave the enteire inpainting domain D and leaves no holes.

These issues have been taken care in [Masnou and Morel(1998)]. A more convenient alternative

approach is to work with the level-set function uD instead. An ammisible curve boundleF = {γλ}λ,

which not only satisfies the boundary conditions, but also avoids the above mentioned two problems,

is uniquely and fully characterized by an inpainting function uD that is tangent to u0 along ∂ D.

However, working with uD instead of the individual isophotes automatically avoids the above two

problems.

The Elastica Inpainting Model

Let u = uD be an admissible inpainting. Then along any isophote γλ : u ≡ λ, the curvature of the

oriented curve is given by

c=∇·~n =∇·
�

∇ u
|∇ u|

�

= div
�

∇ u
|∇ u|

�

=H.

Remark 4.10. Given a 2D smooth surface in 3D, if we denote with c1 and c2 the principal curvatures,

respectively the minimum and the maximum curvatures among all curves contained in the orthogonal

planes to the surface, we can denote with H= c1+c2 is the mean curvature and with K= c1c2 the

Gaussian curvature. The second fundamental form (or shape form) is

A=





c1 0

0 c2





On the other hand, dt denotes the length element along the normal direction ~n (or along the

steepest ascent curve), then we have

dλ
dt
= |∇ u|, or dλ= |∇ u|dt .
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Therefore, integated elastica energy (4.4) now passes on to u by

J [u] = Ew[F ] =
∫ 1

0
w(λ)

∫

γλ:u=λ
(a+ bc2)ds dλ

=
∫ 1

0

∫

{γλ:u=λ}
w(u)

�

a+ b
�

∇· ∇ u
|∇ u|

�2�

|∇ u|dt ds

=
∫

D
w(u)

�

a+ b
�

∇· ∇ u
|∇ u|

�2�

|∇ u|dx,

since dt and ds represents a couple of orthogonal length elements. Now the energy is completely

expressed in terms of the inpainting u itself. Notice that this formal derivation is much alike the

coarea formula for BV functions. The weights function w(λ) can be set to 1. In applications, we can

also define it by looking at the histogram h(λ) of a given image, where h(λ) denotes the frequency of

pixels with gray level λ. Since perceptually the regularity of the boundaries (or edges) defining the

2D shapes of the objects is most sensitive to human observers, we may weigh high along such edges

whose gray values typically lie near the valleys of the histogram. Therefore we may choose the weight

function in the form of

w(λ) =W (1− h(λ)),

with W =W (h) being a suitable positive and increasing function.

From the moment on, let us consider the functionalized Euler’s elastica energy

J2[u] =
∫

D

�

a+ b
�

∇· ∇ u
|∇ u|

�2�

|∇ u|dx, (4.5)

with the conditions that

u|Ω\D = u0|Ω\D ,
∫

∂ D
|∇ u|= 0, |c(p)|<∞, a.e. along ∂ D , (4.6)

where a.e. is in the sense of Hausdoorf measure. We have assumed that the original complete image u0

(typically on a square domain Ω) belongs to BV(Ω) and has the property that
∫

∂ D
|∇ u0|= 0,

in the sense of Radon measure
∫

|∇ u0|. Under such assumptions, the second boundary condition on

u follows naturally and it is called the feasibility condition for all low-level inpaintings (i.e. inpaintings

which do not depend on global feature recognition or learning). In this way, a low-level inpainting is

not expected to create a new object, but just complete objects based on the hits they left outside the

inpainting domain because
∫

∂ D
|u+− u−|dH 1 =

∫

∂ D
|∇ u0|= 0 =⇒ u− = u+ = u+0 , a.e. along ∂ D byH 1.



74 4. The Inpainting problem

The third condition demands finite curvatures along the inpainting boundary, therefore a sudden turn

of isophotes is not permitted along ∂ D , and the condition is thus a first order continuity constraint.

Because of the lack of regularity of BV functions it has been introduced the concept of weak curvature.

Suppose u ∈ BV(D), then

duν =
∫

|∇ u|

is a Radon measure on D . Recall that the TV norm is defined in the distributional sense:
∫

D
|∇ u|= sup

g∈C 1
0 (D ,B1)

∫

D
u∇·g dx,

where B1 denotes the unit ball centered at the origin in R2. Let supp(duν) denote the support of the

TV measure. Then for any p ∈ supp(duν), on any if its small neighbourhood Np ,

duν(Np ) =
∫

Np

|∇ u|> 0.

Let ρ be a a fixed radially symmetric non-negative mollifier with compact support and unit total

integral, and set (for 2D)

ρσ =
1
σ2
ρ

�

x
σ

�

, and uσ = ρσ ∗ u.

Definition 4.11. We define the weak absolute curvature ec(p) of u at p by

ec(p) = limsup
σ→0

�

�

�

�

�

∇·
� ∇ uσ
|∇ uσ |

�

(p)

�

�

�

�

�

,

where for those σ ’s which give |∇ uσ (p)|= 0, we define∇·(∇ uσ/|∇ uσ |) to be∞.

For any pixel p outside supp(duν), we assign 0 toec(p), since u is a.e. a constant near a neighbourhood

of p. Thus, the weak absolute curvature is well-defined everywhere for an arbitrary BV function.

Proposition 4.12. Suppose u is C 2 near p, p ∈ supp(duν), and∇ u(p) 6= 0. Then ec(p) = |c(p)|.

Proposition 4.13. Suppose an oriented curve segment γ is a C 2 submanifold in D. Assume that near a

given pixel p ∈ γ , to one side of γ , u = c+, and to the other side u = c−, two constant gray values. Then

ec(p) = |c(p)|.

Proposition 4.14. Let u ∈ BV(Ω) and v = au + b for some constants a and b 6= 0. Then for any p ∈Ω,

ecu (p) = cv (p) so, in other words, ec is invariant under linear scaling of gray levels.

With the help of the concept of weak curvature, the functionalized elastica energy (4.5) can be

rigorously defined. A BV function u is said to be admissible if ec ∈ L2(D , duν). For all such functions,

the generalized elastica energy

J2[u] =
∫

D
(a+ bec2)duν

is well-defined and finite. Toghether with the boundary conditions (4.6), it defines the so called elastica

inpainting model, which provides a difficult analysis for the existence and uniqueness solution due to

the non-convexity of the energy and the involvment of the curvature.
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TV inpainting model of Chan and Shen

The TV inpainting model [Chan and Shen(2002)] is an extreme case of the elastica inpainting when

one weighs highly against the total variation, i.e. a/b =∞. Thus one is led to the minimization of

T V (u) =
∫

Ω
|∇ u|, with the condition u|Ω\D = u0|Ω\D , (4.7)

where D is the enteire (often rectangular) image domain. We shall always assume that Ω is a bounded

Lipschitz domain: this is the noise free TV inpainting model.

Theorem 4.15 (Existence of a Noise Free TV Inpainting). Suppose that the original complete image u0

lies in BV(Ω), and takes gray values between 0 (black) and 1 (white). Then the noise free TV inpainting

model, together with the gray value constraint u ∈ [0,1], has at least one optimal inpainting.

Proof. Since the original complete image u0 is admissible (i.e. satisfying the constraint and with finite

TV measure), we can always find a minimizing sequence of admissible inpaintings {uh}h∈N for the

model. Then both
∫

Ω
|∇ uh | and

∫

Ω
|uh (x)|dx

are bounded for all h since Ω is bounded and uh takes values in the gray scale interval [0,1]. By the

weak compactness property of BV functions, there is a subsequence, still denoted by {uh}h∈N for

convenience, which strongly converges to some uT V ∈ L1(Ω) in the L1 norm. Apparently, uT V still

meets the constraints

uT V |Ω\D = u0|Ω\D and uT V (x) ∈ [0,1].

Also, by the L1 lower semicontinuity property,
∫

Ω
|∇ uT V | ≤ liminf

h→∞

∫

Ω
|∇ uh |=min

u

∫

Ω
|∇ u|.

Thus uT V must be minimizer.

Remark 4.16. This model can be modified to deal with noisy images, i.e. u0(x) = uc (x)+n(x), where

uc is the cleaned image and n is the noise, replacing the constraint (4.7) with:

1
Area(Ω \D)

∫

Ω\D
(u − u0)

2 = σ2, (4.8)

where σ2 is the variation of the noise, which can be estimated from u0|Ω\D by statistical estimators.

We can however assume that n(x) is Gaussian with mean 0.

Theorem 4.17 (Existence of a T V Inpainting for a Noisy Image). Given an image observation u0 on

Ω \D, assume that there exists at least one image uc (i.e. the original clean image) on Ω, which belongs to

BV(Ω) and meets the denoising constraint (4.8) and gray scale constraint uc ∈ [0,1]. Then there exists at

least one optimal T V inpainting on Ω, which does inpainting inside and noise cleaning outside.
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Remark 4.18. The solutions to both TV and elastica inpaintings can be non-unique: this is an intrinsic

inpainting problem.

4.3 A variational approach for exemplar-based inpainting

Referred to Figure 12, we introduce the main aspects of the very recent work on inpainting problem by

[Arias et al.(2011)]. We denote the images as functions u :Ω→R, where Ω denotes the image domain,

usually a rectangle in Rn : the points in Ω are pixels. Pixel positions are denoted by x, y or h, the latter

for positions inside the patch. A patch of u centred at x is denoted by pu(x) = pu(x, · ) : Ωp → R

where Ωp is a rectangle centred at 0. The patch is defined by pu(x, h) = u(x + h), with h ∈Ωp . Let

O ⊂ Ω be the hole or inpainting domain, and O c = Ω \O. We assume that O is an open set with

Lipschitz boundary. We still denote by u the part of the image u inside the hole, while u is the

part of u in O c : u = u|O c . We take eO as the set of centres of patches that intersect the hole, i.e.
eO =O +Ωp = {x ∈Ω : (x +Ωp)∩O 6= ;}. In doing so, patches p

bu(y) centred at points y ∈ eO c are

contained in O c and the Euler equation for the minimizer of the proposed functional is simplified.

We assume that eO +Ωp ⊂Ω, i.e. every pixel in eO supports a patch centred on it and contained in Ω.

Analogously, we will also shrink eO c to have eO c +Ωp ⊂Ω.

Figure 12: Notations used in inpainting problem.

Energy Formulation

The proposed energy formulation contains two terms, one of them is inspired by the following

functional

Fw (u) =
∫

O

∫

O c
w(x, y)(u(x)− bu(y))2 dy dx, (4.9)

where w : O ×O c → R+ is a (probabilistic density) weight function that measures the similarity

between patches centered in the inpainting domain and in its complement, while the second one
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allows us to compute the weigths given the image. If w(x, y) are known, the minimum of Equation

(4.9) should have a low pixel error (u(x)− bu(y))2 whenever the similarity weight is high, driving the

information transfers from known to unknown pixels. The complete proposed functional is

Eε,T (u, w) =Uε(u, w)−T
∫

eO
H (w(x, · ))dx, (4.10)

subject to
∫

eO c
w(x, y) = 1,

where

Uε(u, w) =
∫

eO

∫

eO c
w(x, y)ε (pu (x)− p

bu (y))dy dx, (4.11)

ε( · ) is an error function for image patches (such as the squared L2 norm), and

H (w(x, · )) =−
∫

eO c
w(x, y) log(w(x, y))dy

is the entropy of the probability w(x, · ). Minimizing Equation (4.11) with respect to the image u

will force the patch pu(x) to be similar to pu(y) whenever w(x, y) is high. Moreover, for a given

completion u, and for each x ∈ eO, the optimum weights minimize the mean patch error for pu(x)

given by
∫

eO c
w(x, y)ε(pu (x)− p

bu (y))dy,

while maximizing the entropy. This can be related to the principle of maximum entropy [Jaynes(1957)],

widely used for inference of probability distributions. According to it, the best representation for a

distribution, given a set of samples, is that one maximizing the entropy, i.e. the distribution which

makes less assumptions about the process. Taking ε as the squared L2-norm of the patch, then the

resulting weights are given by

w(x, y)∝ exp
�

− 1
T
‖pu (x)− p

bu (y)‖
2
�

,

where T controls the trade-off between both terms and is also the selectivity parameter of the Gaussian

weights. Note that restricting w(x, · ) to be a probability, trivial minima of ε with w(x, y) = 0

everywhere are discarded.

The patch error function ε

Patches are functions defined on Ωp and, if P denotes a suitable space of patches, the error function

ε : P→R+ is defined as the weighted sum of pixel-wise errors e :R→R+:

ε(pu (x)− p
bu (y)) = g ∗ e(u(x + · )− bu(y + · )).

Here, g :Rn→R+ denotes a suitable intra-patch kernel function (with the highly desiderable property

to have a compact support).
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Patch non-local means. If we use e(r ) = |r |2, then P≡ L2(Ωp ) and

ε(pu (x)− p
bu (y)) = ‖pu (x)− p

bu (y)‖
2
g = g ∗ |u(x + · )− bu(y + · )|2.

Patch non-local medians. If we use e(r ) = |r |, then P≡ L1(Ωp ) and

ε(pu (x)− p
bu (y)) = ‖pu (x)− p

bu (y)‖g = g ∗ |u(x + · )− bu(y + · )|.

Patch non-local Poisson. If we use P≡W1,2(Ωp ), then

ε(pu (x)− p
bu (y)) = ‖pu (x)− p

bu (y)‖
2
∇,g = g ∗ |∇ u(x + · )−∇ bu(y + · )|2.

Patch non-local gradient medians. If we use P≡ BV(Ωp), then

ε(pu (x)− p
bu (y)) = ‖pu (x)− p

bu (y)‖∇,g = g ∗ |∇ u(x + ·)−∇ bu(y + ·)|.

The information provided by the gradient of the image allow to determine not only the patch

similarity but also the image synthesis. An energy for RGB images can be obtained by defining a patch

error function for RGB patches as the sum of the error functions of the three scalar components:

ε(pu (x)− p
bu (y)) =

3
∑

i=1

ε(pui
(x)− p

bui
(y)).

The Euler-Lagrage equation

Let us compute the Euler-Lagrange equations of Eε,T with respect to both weights and image. Fixed

u and minimizing Equation (4.10) with respect to w we obtain, from the Euler-Lagrange equation

δwEε,T (u, w) = 0,

wε,T (u)(x, y) =
1

Zε,T (u)(x)
exp

�

− 1
T
ε(pu (x)− p

bu (y))
�

,

with the normalizing factor (to obtain a probability)

Zε,T (u)(x) =
∫

eO c
exp

�

− 1
T
ε(pu (x)− p

bu (y))
�

dy.

The weight function w(x, y)measures the similarity between the patches centred at x ∈ eO and y ∈ eO c .

For computing the Euler-Lagrange equation with respect to the image, we will consider the energies

corresponding to the patch NL-Means and NL-Poisson patch error functions

Patch NL-means The resulting Euler-Lagrange equation is the following

u(z) =
1

k(w)(z)

∫

Rn
g ∗w(z − · , z ′− · )bu(z ′)dz ′, z ∈O,

where k(w)(z) =
∫

Rn g ∗w(z − · , z ′− · )dz ′ = 1, assuming both the weights and g are normalized.

Thus, optimal u are given by a non-local average of the known pixels. The weights in the average are

obtained by convolving the Gaussian similarity weights with the patch kernel g .
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Patch NL-Poisson In this case we have that u is a solution of the Poisson equation:







∆ u(z) = divv(w)(z), z ∈O,

u = bu, in ∂ O,
(4.12)

where v(w)(z) =
∫

Rn g ∗ w(z − · , z ′ − · )∇ bu(z ′)dz ′. The solutions of this Poisson equation are

minimizers of the functional
∫

eO‖∇ u(z)− v(w)(z)‖22 dz . Therefore, u is computed as the image with

the closest gradient, in the L2 sense, to a guiding vector field v(w)(z) computed as a non-local average

of the image gradients in the known portion of the image.

Getting a correpondence

It is possible to get formally a correspondence map by taking the limit T → 0. The resulting energy is

dominated by the image term and can be written as

E(u, w)'
∫

eO

∫

eO c
w(x,bx)ε(pu (x)− p

bu (bx))dbx dx,

rewritten as

E(u,ϕ)'
∫

eO
ε(pu (x)− p

bu (ϕ(x)))dx.

So, the weights w(x, · ) can be written as Dirac’s delta function on a point ϕ(x) which is a nearest

neighbour of the patch pu (x) with respect to the patch error function, i.e. w(x,bx) = δ(bx −ϕ(x)).

Existence of minima

Patch NL-means model

We assume that Ω is a rectangle in Rn and bu : O c →R with bu ∈ L∞(O c ). We assume that u :Ω→R

is such that u|O c = bu. We also assume that u is extended by symmetry and then by periodicity to Rn .

We consider the patch NL-Means model

E2,T (u, w) =
∫

eO

∫

eO c
w(x, y)‖pu (x)− p

bu (y)‖
2
g +T

∫

eO

∫

eO c
w(x, y) log w(x, y)dy dx.

Obviously, E2,T (u, w) = +∞ in case that the second integral is not defined. Let

W =
¨

w ∈ L1( eO × eO c ) :
∫

eO c
w(x, y)dy = 1 a.e. x ∈ eO

«

.

Our purpose is to prove the following result stating the existence of minima of

min
(u,w)∈A2

E2,T (u, w), (4.13)
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whereA is the admissible class of functions

A2 =
n

(u, w) : u ∈ L∞(Ω), u = bu in O c , w ∈W
o

.

Let Cc (Rn) be the set if continuous functions with compact support in Rn and Cc (Rn)+ the set of

nonnegative functions in Cc (Rn). Let Q an open set and W 1, p (Q), 1≤ p ≤∞ is the space of functions

v ∈ Lp(Q) such that ∇v ∈ Lp(Q)n . By W 1, p(Q)+ we denote the set of nonnegative functions in

W 1, p(Q). We denote W 2, p(Q) (resp. by W 2, p
loc
(Q)), 1 ≤ p ≤∞, the space of functions v ∈ Lp(Q)

such that∇v ∈ Lp (Q)n and D2v ∈ Lp (Q)n×n (resp. the functions v ∈W 2, p (Q ′)) for any subdomain

Q ′ included in a compact set of Q. Let us assume in the rest that g ∈ L1(Rn)+ and
∫

Rn g (h)dh = 1.

Proposition 4.19. Assume that g ∈ Cc (Rn)+ has support contained in Ωp , ∇ g ∈ L1(Rn) and bu ∈

BV(Oc)∩ L∞(O c ).

1. If (un , wn) ∈ A2 is a minimizing sequence for E2,T such that un is uniformly bounded, then we

may extract a subsequence converging to a minimum of E2,T .

2. There exist a minimum (u, w) ∈ A2 of E2,T . For any minimum (u, w) ∈ A2 we have that

u ∈W 1,∞(O) and w ∈W 1,∞( eO × eO c ).

In other words, there are smooth minima and smooth probability distributions representing the

fuzzy correspondences between eO and eO c . To prove Proposition 4.19, we need the following lemma:

Lemma 4.20. Assume that g ∈Cc (Rn)+ has support contained in Ωp ,∇ g ∈ L1(Rn) and bu ∈ BV(Oc)∩

L∞(O c ). Assume that u ∈ L∞( eO +Ωp ). Then the functions

∇x g ∗ (u(x + · )− bu(y + · ))2 and ∇y g ∗ (u(x + · )− bu(y + · ))2

are uniformly bounded in eO × eO c by a constant that depends on ‖∇ g‖L1 , ‖u‖∞ and ‖bu‖∞.

Remark 4.21. The assumption bu ∈ BV(Oc) forces to consider the assumption that bu ∈ L∞(O c ).

Proof of Proposition 4.19. Let us prove the two statements:

1. Let (un , wn) ∈A2 be a minimizing sequence of Equation (4.13) such that {un}n is uniformly

bounded. Since Ω is a bounded domain we have that the following integral is bounded:
∫

eO

∫

eO c
χ{wn>1}wn(x, y) log wn(x, y)dy dx

Hence wn(1+log+wn) is bounded in L1( eO× eO c ), i.e. wn is bounded in LLo g+L( eO× eO c ), called

Birnbaum-Orlicz space (the space of functions such that
∫

Rn |u| log+ |u|<∞, this generalize the

Lp spaces). Then the sequence wn is relatively weakly compact in L1 and modulo a subsequence
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we may assume that wn weakly converges in L1( eO × eO c ) to some w ∈W . By Lemma 4.20, the

functions

∇x

∫

Rn
g (h)(un(x + h)− bu(y + h))2 dh and ∇y

∫

Rn
g (h)(un(x + h)− bu(y + h))2 dh

are bounded in L∞( eO × eO c ). Thus, modulo the extraction of a subsequence, we may assume

that un→ u weakly in all Lp, 1≤ p <∞ and g ∗ (un(x+ · )− bu(y+ · ))2 converges strongly in

all Lp spaces and also in the dual of LLo g+L to some function W . Then, by passing to the limit

as n→∞ we have
∫

eO

∫

eO c
w(x, y)W (x, y)dy dx +T

∫

eO

∫

eO c
w(x, y) log w(x, y)dy dx ≤ liminf

n
ε2,T (un , wn).

Taking test functions ψ(x, y), integrating in eO × eO c and using the convexity of the square

function, we have
∫

Rn
g (h)(u(x + h)− bu(y + h))2 dh ≤W (x, y).

Thus,

E2,T (u, w)≤ liminf
n
E2,T (un , wn).

2. See [Arias et al.(2012)] for details.

Patch NL-Poisson model

We consider the model

E∇,T (u, w) =
∫

eO

∫

eO c
w(x, y)‖pu (x)− p

bu‖
2
g ,∇ dy dx +T

∫

eO

∫

eO c
w(x, y) log w(x, y)dy,

where,

‖p‖2g ,∇ =
∫

Rn
g (h)‖∇ p(h)‖22 dh, p ∈P .

Recall that we assume that u|O c = bu. Let

A∇ =
n

(u, w) ∈A2 : u ∈W1,2(O), u|∂ O = bu|∂ O c

o

.

Our purpose is to prove the following result stating the existence of minima of

min
(u,w)∈A∇

E∇,T (u, w). (4.14)

Proposition 4.22. Assume that bu ∈W2,2(O c )∩ L∞(O c ) and g ∈W1,∞(Rn)+ has compact support in

Ωp . There exists a solution of the variational problem (4.14). Moreover for any solution (u, w) ∈A∇ we

have u ∈W1,2(O)∩W2, p
loc
(O)∩ L∞(O) for all p ∈ [1,∞] and w ∈W1,∞( eO × eO c ).
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Lemma 4.23. Assume that bu ∈W1,2(O c ) and g ∈ L∞(Rn)+ has compact support on Ωp . Let (u, w) ∈

A∇. Assume that ε∇,T (u, w)≤C . Then

‖u‖W1,2(O) ≤C ′
�

C ,‖∇ bu‖L2(O c )

�

,

where C ′ =C ′
�

C ,‖∇ bu‖L2(O c )

�

denotes a constant that depends on its arguments.

Lemma 4.24. Assume that bu ∈ W2,2(O c ), u ∈ W1,2(O), u|∂ O = bu|∂ O c and g ∈ W1,∞(Rn)+ has

compact support on Ωp . Then

∇x

∫

Rn
g (h)|∇x u(x + h)−∇y bu(y + h)|2 dh and ∇y

∫

Rn
g (h)|∇x u(x + h)−∇y bu(y + h)|2 dh

are bounded in L∞( eO × eO c ) with a bound depending on ‖bu‖W2,2(O c ), ‖g‖W1,∞ and ‖∇ u‖L2(O).

Proof of Proposition 4.22. Let us prove the two statements:

1. Let (un , wn) be a minimizing sequence of Equation (4.14). Since Ω is a bounded domain we

have that
∫

eO

∫

eO c
χ{wn>1}wn(x, y) log wn(x, y)dy dx

is bounded. Hence wn(1+ log+wn) is bounded in L1( eO × eO c ). Then the sequence wn is

relatively weakly compact in L1 and modulo a subsequence we may assume that wn weakly

converges in L1( eO × eO c ) to some w ∈ W . By Lemma 4.23, we have that un is uniformly

bounded in W1,2( eO). By Lemma 4.24, we have that

∇x

∫

Rn
g (h)|∇ u(x + h)−∇ u(y + h)|2 dh and ∇y

∫

Rn
g (h)|∇ u(x + h)−∇ u(y + h)|2 dh

are uniformly bounded in L∞( eO× eO c ). Thus, modulo the extraction of a subsequence, we may

assume that un→ u a.e. and in L2( eO),∇ un→∇ u weakly in L2( eO +Ωp) and g ∗ (∇x un(x +

· )−∇y bun(y + · ))2 converges strongly in all Lp spaces, 1 ≤ p <∞, and also in the dual of

LLo g+L to some function W . Then by passing to the limit as n→∞, we have
∫

eO

∫

eO c
w(x, y)W (x, y)dy dx +T

∫

eO

∫

eO c
w(x, y) log w(x, y)dy dx ≤ liminf

n
ε∇,T (un , wn).

Taking test functions ψ(x, y), integrating in eO × eO c and using the convexity of the square

function, we have
∫

Rn
g (h)(∇x u(x + h)−∇y bu(y + h))2 dh ≤W (x, y).

Thus

E∇,T (u, w)≤ liminf
n
E∇,T (un , wn).

2. See [Arias et al.(2012)] for details.



4.3 A variational approach for exemplar-based inpainting 83

Existence of optimal correspondence maps

Definition 4.25 (Measurable measure-valued map). Let X ⊆ Rn , Y ⊆ Rm be open sets, µ be a

positive Radon measure inX and x→ νx be a function that assigns to each x ∈X a Radon measure

νx on Y . We say that the map is µ-measurable if x→ νx (B) is µ-measurable for any Borel set B ∈Y .

By the disintegration Theorem, if ν is a Radon measure in X ×Y such that ν(X ×Y ) <∞

for any compact set K ⊆ X and µ = π#ν (i.e. µ(B) = ν(B × Y ) for any Borel set B ⊆ X , where

π :X ×Y →X is the projection on the first factor), then there exist a measurable measure-valued

map x→ νx such that νx (Y ) = 1 µ-a.e. inX and for any ψ ∈ L1(X ×Y , ν) we have,

ψ(x, · ) ∈ L1(Y , νx ), for µ-a.e. x ∈X ,

x→
∫

Y
ψ(x, y)dνx (y) ∈ L1(X ,µ),

∫

X×Y
ψ(x, y)dν(x, y) =

∫

X

∫

Y
ψ(x, y)dνx (y)dµ(x).

Let us considerMP the set of measurable measure valued maps ν ≥ 0 in eO × cl( eO c ) such that

π#ν =L n |
eO denotes the Lebesgue measure restricted to eO. We assume that g ∈Cc (Rn) has support

contained in Ωp ,∇ g ∈ L1(Rn) and bu ∈ BV(Oc)∩ L∞(O c ). Let

A2,0 = {(u, ν) : u ∈ L∞(Ω), u = bu in O c , ν ∈MP }.

For (u, ν) ∈A2,0, define

E2,0(u, ν) =
∫

eO

∫

eO c
g ∗ (u(x + · )− bu(y + · ))2 dν(x, y).

By Lemma 4.20, the above integral is well defined.

Theorem 4.26. There exists a minimum (u, ν) ∈A2,0 of E2,0.

Let ϕ : eO → eO c be a measurable map. Then x ∈ eO → νx = δϕ(x)(y) is measurable. Similarity if

the map x ∈ eO→ νx = δϕ(x)(y) is measurable then ϕ is measurable. Let us denote by νϕ the measure

determined by ϕ.

Proposition 4.27. There exists a minimum (u∗, ν∗) ∈A2,0 ofE2,0 such that ν∗ = νϕ whereϕ : eO→ cl( eO c )

is a measurable map.

The next proposition shows the relation between the patch NL-Means functional for T > 0 and E2,0.

Proposition 4.28. The energies E2,T Γ -converge to the energy E2,0. In particular, the minima of E2,T

converge to minima of E2,0.
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Remark 4.29. For the NL-Poisson model, the limit energy is now

E∇,0(u, ν) =
∫

eO

∫

eO c
g ∗ (∇ u(x + · )−∇ bu(y + · ))2 dν(x, y).

In this case, we assume that bu ∈W2,2(O c ) and g ∈W1,∞(Rn) has compact support in Ωp and we use

Lemmas 4.23 and 4.24.

Alternating optimization

NL-means algorithm

Proposition 4.30. The iterated optimization algorithm converges (modulo a subsequence) to a critical

point of E2,T . The solution obtained (u∗, w∗) satisfies the regularity properties stated in Proposition 4.19,

that is u∗ ∈W 1,∞(O) and w∗ ∈W 1,∞( eO × eO c ).

Algorithm 1 Alternating optimization for NL-means model

Input: u0 with ‖u0‖∞ ≤ ‖bu‖∞.

1: for each k ∈N do

2: wk+1 = argminw∈W E2,T (u
k , w),

3: uk+1 = argminu E2,T (u, wk+1).

4: end for

NL-Poisson algorithm

Proposition 4.31. The iterated optimization algorithm converges (modulo a subsequence) to a critical

point (u∗, w∗) ∈ A∇ of the energy E∇,T (u, w). The solution obtained has the smoothness described in

Proposition 4.22, i.e. u ∈W 1,2(O)∩W 2, p
loc (O)⊂ L∞(O) for any p ∈ [1,∞) and w ∈W 1,∞( eO × eO c ).

Algorithm 2 Alternating optimization for NL-Poisson model

Input: u0 with ‖u0‖∞ ≤ ‖bu‖∞.

1: for each k ∈N do

2: wk+1 = argminw∈W E∇,T (u
k , w),

3: uk+1 = argminu∈W 1,2, u|∂ Oc=bu|∂ Oc
E∇,T (u, wk+1).

4: end for

Remarks and visual results

Exemplar-based inpainting is based on patch similarity and this comparison is performed by the

Patchmatch algorithm [Barnes et al.(2009)]. Patch search for similarities is a common problem in
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many applications and the computation of the nearest neighbour is the most time consuming step:

Patchmatch performs the search among all patches in the domain very fast (0.72s for two 399× 358

images). This algorithm was introduced for computing nearest neighbours between two images (e.g.

similar patches with respect to L2 metric). The justification of the convergence is based on a simple

probabilistic argument:

1. randomly finding a match for a particular pixel is rare and, if M is the image size, then the

probability to choose the best match is P= 1/M ;

2. matching for at least one (in the image) is not rare at all: 1− 1/M is the probability to make the

wrong choice

P= 1−
�

1− 1
M

�M
≈ 1− 1

e
for large M ;

3. finding an approximate match (i.e. the offset is in a C-neighbourhood of the exact offset) that

will be refined in the next iterations has even more chance:

P= 1−
�

1− C
M

�

≈ 1− exp(−C );

4. propagation takes care of the rest.

(a) Input. (b) Output. (c) Patch-pasting.

Figure 13: Results from Figure 12.

Another issue of Exemplar-based inpainting methods is the critical dependence with the size of the

patch. Furthermore, when the inpainting domain is large in comparison with the patch, the proposed

energies have many local minima, and not all of them are good inpaintings. It is a common practice

in literature to incorporate a multiscale scheme, applying sequentially the inpainting method on a

Gaussian image pyramid, starting at the coarsest scale. The result at each scale is upsampled and used as

initialization for the next finer scale while the patch size is constant through scales: this corresponds to

minimize a sequence of energies with decreasing patch size without subsampling the image. Among all

the experiments in [Arias et al.(2011)], we show two meaningful examples compared with a method

in [Kawai et al.(2009)], based on considering brightness change and spatial locality of texture pattern:

this allows linear brightness change of the texture pattern. Results in Figure 14.
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Figure 14: KSY from [Kawai et al.(2009)] while M and P stand for patch NL-Means, and NL-Poisson.

Remark 4.32. The NL-Poisson method fits very well the transition of brightness while NL-Means is

useful in blending situations. Despite of this, one of the main issue in this research field is to solve the

inpainting problem for a domain in which the perspective and the illumination change simultaneously:

the copy-past method doesn’t work well in this context.



CHAPTER 5
A Drift Diffusion approach for Shadow Removal

Among all variational methods proposed by [Arias et al.(2011)] for solving the inpainting problem, we

have seen that Non-local Poisson method models very well the situations where gradients of illumination

are highly desirable. This behaviour is strictly connected with the diffusion-transport Equation (4.12)

to be solved. This equation is also called drift-diffusion equation, derived from the Fokker-Plank

probabilistic equation which describes the time evolution of the probability density function of the

velocity of a particle under drag and random forces’ influence, as in Brownian motion:

∂ u(x, t )
∂ t

=
∂ 2

∂ x2
[D(x, t )u(x, t )]− ∂

∂ x
[µ(x, t )u(x, t )] ,

with drift µ(Xt , t ) and diffusion coefficient D(Xt , t ).

In this chapter, we present the main results of [Weickert et al.(2013), Vogel et al.(2013)], where

special applications of drift-diffusion equation are shown: in particular, our focus is in recovering the

information underlying shadow areas. We tested the proposed formulation working out also some

alternative approaches for solving the PDE, in order to speed up the computation time. Drift-diffusion

equation is sometimes presented as an osmosis process, in the sense reported by Prof. Weickert:

Osmosis is a transport phenomenon that is omnipresent in nature. It differs from diffusion

by the fact that is allows nonconstant steady states. [. . .]Osmosis describes transport through a

semipermeable membrane in such a way that in its steady state, the liquid concentrations on

both sides of the membrane can differ. Osmosis is the primary mechanism for transporting

water in and out of cells, and it has many applications in medicine and engineering. It can be

seen as the nonsymmetric counterpart of diffusion. Since diffusion can only model symmetric

transport processes, it leads to flat steady states. [. . .] In contrast to osmosis in natural systems

we do not need two different phases (water and salt) and a membrane that is only permeable

for one of them: We can obtain nonconstant steady states within a single phase that represents

the grey value.



88 5. A Drift Diffusion approach for Shadow Removal

Definition 5.1 (Steady State). In systems theory, a system is in steady state for a property p if the

partial derivative of p with respect to time is zero, i.e.

∂ p
∂ t
= 0

Steady state is a more general situation than dynamic equilibrium. If a system is in steady state,

then the recently observed behaviour of the system will continue into the future. Typically, the state

between the initial data and the steady state are called transient state.

5.1 The continuous model

For simplicity, in Image Processing a grayscale image is considered as positive function u on a rectan-

gular domain Ω⊂R2:

u :Ω→R+, with boundary ∂ Ω.

Definition 5.2 (Linear Osmosis filter). A (linear) osmosis filter is a drift-diffusion equation with initial

condition f and homogeneous Neumann conditions:























∂ u
∂ t
=∆ u − div(du), on Ω× (0,T ]

u(x, 0) = f (x), on Ω

〈∇ u −du,n〉= 0, on ∂ Ω× (0,T ]

(5.1)

where d :Ω→R2 is the drift vector field.

This equation provides some nice properties:

• Preservation of the Average Grey Value: this is essential in segmentation algorithms and in

medical applications, because grey values measure often physical qualities of the depicted object:

1
|Ω|

∫

Ω
u(x, t )dx=

1
|Ω|

∫

Ω
f (x)dx ∀t > 0.

Proof. We denote the average gray value at time t ≥ 0 with

µ(t ) =
1
|Ω|

∫

Ω
u(x, t )dx.

Using the divergence Theorem and the homogeneous Neumann conditions we write

dµ
dt
=

1
|Ω|

∫

Ω
∂t u(x, t )dx=

1
|Ω|

∫

Ω
div(∇ u −du)dx=

1
|Ω|

∫

∂ Ω
〈∇ u −du,n〉dS = 0.

So the average gray value remains constant over time.
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• Preservation of Positivity: starting from a positive image, we have guaranteed a weaker prop-

erty than the minimum-maximum principle. Otherwise the (Linear) Osmosis filter can violate

this property. In other words, if u(x, 0)> 0, then u(x, t )> 0, for all x ∈Ω, ∀t > 0.

• Convergence to a Nontrivial Steady State: if d satisfies

d=∇(ln v) =
∇v

v
,

with some positive image v, osmosis process converges to v up to a multiplicative constant

which ensures preservation of the average grey value of u. Thus, osmosis creates nontrivial

steady states. This is a fundamental difference to diffusion that allows only flat steady states. So

the steady state equation∆ u − div(du) = 0 is equivalent to the Euler-Lagrange Equation of the

energy functional

E(u) =
∫

Ω
v
�

�

�

�

∇
� u

v

�

�

�

�

�

2
.

Proof. This follows from a simple computation in Calculus of Variations:

0=
∂

∂ t

�

�

�

�

�

t=0

�

∫

Ω
v
�

�

�

�

∇
� u + tϕ

v

�

�

�

�

�

2

dx

�

=
∂

∂ t

�

�

�

�

�

t=0

�

∫

Ω
v
�

�

�

�

∇
� u

v

�

+ t∇
�ϕ

v

�

�

�

�

�

2

dx

�

=
∂

∂ t

�

�

�

�

�

t=0

�

∫

Ω
v
�

�

�

�

∇
� u

v

�

�

�

�

�

2

dx+ 2t
∫

Ω
v∇

� u
v

�

· ∇
�ϕ

v

�

dx+ t 2
∫

Ω

�

�

�

�

∇
�ϕ

v

�

�

�

�

�

2

dx

�

= 2
∫

Ω
v∇

� u
v

�

· ∇
�ϕ

v

�

dx= 2
D

v∇
� u

v

�

,∇
�ϕ

v

�E

Ω

then, passing to the adjoint it gives

=−2
D

div
�

v∇
� u

v

��

,
ϕ

v

E

Ω
= 0 =⇒ − 2

v
div

�

v∇
� u

v

��

= 0.

So, this converges to the steady state equation∆ u − div(du) = 0:

0=div
�

v∇
� u

v

��

= div
�

v
∇(u)v − u∇(v)

v2

�

= div
�∇(u)v − u∇(v)

v

�

=div
�

∇(u)−
u∇(v)

v

�

=∆ u − div (du) .

Remark 5.3. We noted that the steady state equation∆ u − div(du) = 0 is the same Equation (4.12)

to be solved for Non-local Poisson approach in inpainting problem. In this case, d is the guidance vector

field. Since d contains the gradient information of ln v, osmosis is a process for data integration.

Applying the osmosis theory to each RGB color channel, we can simply extend these results from

grayscale to color images, computing the drift vectors for each channel.
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5.2 The discrete model

Given a 2D image u, we can discretize Equation (5.1) using a grid with a space step h = 1 in each

direction î and ĵ and a small enough time step dt. We denote with u t
i , j a pixel-color approximation to

u in the grid
��

i − 1
2

�

h,
�

j − 1
2

�

h
�

at time t . Setting d= (d1, d2)
T, the first attempt to solve Equation

(5.1) is based on a 2D straightforward finite difference discretization. So,

∂ u
∂ t
=∆ u − div(du) =∆ u − divdu −d · ∇ u =∆ u −

∂ d1

∂ x
u −

∂ d2

∂ y
u − d1

∂ u
∂ x
− d2

∂ u
∂ y

is discretized as

∂ ui , j

∂ t
=

ui+1, j + ui−1, j + ui , j+1+ ui , j−1− 4ui , j

h2
−

d1,i+ 1
2 , j − d1,i− 1

2 , j

h
ui , j −

d2,i , j+ 1
2
− d2,i , j− 1

2

h
ui , j

− d1

ui+1, j−ui , j + ui , j − ui−1, j

2h
− d2

ui , j+1−ui , j + ui , j − ui , j−1

2h

=
ui+1, j + ui−1, j + ui , j+1+ ui , j−1− 4ui , j

h2
−

d1,i+ 1
2 , j − d1,i− 1

2 , j

h
ui , j −

d2,i , j+ 1
2
− d2,i , j− 1

2

h
ui , j

− d1

ui+1, j − ui , j

2h
− d1

ui , j − ui−1, j

2h
− d2

ui , j+1− ui , j

2h
− d2

ui , j − ui , j−1

2h

=
ui+1, j + ui−1, j + ui , j+1+ ui , j−1− 4ui , j

h2
−

d1,i+ 1
2 , j − d1,i− 1

2 , j

h
ui , j −

d2,i , j+ 1
2
− d2,i , j− 1

2

h
ui , j

− d1,i+ 1
2 , j

ui+1, j − ui , j

2h
− d1,i− 1

2 , j

ui , j − ui−1, j

2h

− d2,i , j+ 1
2

ui , j+1− ui , j

2h
− d2,i , j− 1

2

ui , j − ui , j−1

2h

=
ui+1, j + ui−1, j + ui , j+1+ ui , j−1− 4ui , j

h2

− d1,i+ 1
2 , j

2ui , j + ui+1, j − ui , j

2h
− d1,i− 1

2 , j

−2ui , j + ui , j − ui−1, j

2h

− d2,i , j+ 1
2

2ui , j + ui , j+1− ui , j

2h
− d2,i , j− 1

2

−2ui , j + ui , j − ui , j−1

2h

=
ui+1, j + ui−1, j + ui , j+1+ ui , j−1− 4ui , j

h2

− d1,i+ 1
2 , j

ui , j + ui+1, j

2h
− d1,i− 1

2 , j

−ui , j − ui−1, j

2h

− d2,i , j+ 1
2

ui , j + ui , j+1

2h
− d2,i , j− 1

2

−ui , j − ui , j−1

2h

=
ui+1, j + ui−1, j + ui , j+1+ ui , j−1− 4ui , j

h2

− 1
h

�

d1,i+ 1
2 , j

ui , j + ui+1, j

2
− d1,i− 1

2 , j

ui , j + ui−1, j

2

�

− 1
h

�

d2,i , j+ 1
2

ui , j + ui , j+1

2h
− d2,i , j− 1

2

ui , j + ui , j−1

2h

�

,
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or, written as penta-diagonal discretization,

∂ ui , j

∂ t
=

 

1
h2
−

d1,i+ 1
2 , j

2h

!

ui+1, j +

 

1
h2
+

d1,i− 1
2 , j

2h

!

ui−1, j

+

 

1
h2
−

d2,i , j+ 1
2

2h

!

ui , j+1+

 

1
h2
+

d2,i , j− 1
2

2h

!

ui , j−1

+

 

− 4
h2
−

d1,i+ 1
2 , j

2h
+

d1,i− 1
2 , j

2h
−

d2,i , j+ 1
2

2h
+

d2,i , j− 1
2

2h

!

ui , j . (5.2)

where, for some positive image v , the discrete approximation of the drift-vector d= (d1, d2)
T = ∇v

v at

intermediate grid point is:

d1,i+ 1
2 , j =

2(vi+1, j − vi , j )

h(vi+1, j + vi , j )
, and d2,i , j+ 1

2
=

2(vi , j+1− vi , j )

h(vi , j+1+ vi , j )
.

Remark 5.4. Guessing to approximate a discontinued image u with finite difference method, can not

assure the right spatial convergence rate because we should assume u ∈C 4 for a second order operator.

ui , j

ui−1, j

ui+1, j

ui , j+1ui , j−1

d1,i−1, j

d1,i+1, j

d2,i , j+1d2,i , j−1

Figure 15: The black grid is a simple representation of a 5× 5 image. Each � is a pixel in internal

domain of the image, each � is a mirrored boundary point and each � is a special mirrored

boundary point at the corners. Each • is a zero drift vector point (automatically imposed)

while each other • and • is automatically computed.



92 5. A Drift Diffusion approach for Shadow Removal

To ensure that in Equation (5.2) the weights of all four neighbours of ui , j are positive, we restrict to

drift vector fields (d1(x), d2(x))
T, with

|d1(x)|<
2
h

and |d2(x)|<
2
h

, ∀x ∈Ω.

With this scheme, we can compute the solution at timestep t +1 given the solution at timestep t . This

scheme also holds for boundary points mirroring the image at its boundaries and assume a zero drift

vector across boundaries. Figure 15 shows very well the situation for a simple 5× 5 image.

5.3 The θ-method

The θ-method is a very popular method in Numerical Analysis to solve a PDE at a desired timestep T

based on updating the solution at time t with a desired timestep dt. We discretize the linear problem

∂t u =∆ u − div(du) as
u t+1− u t

dt
= P (θu t+1+(1−θ)u t ), (5.3)

where P ( · ) is the pentadiagonal matrix discretization of∆( · )− div(d · ). Starting from u0, we can

obtain the solution at the desired time T updating

u t+1 = (I − dtθP )−1(I + dt(1−θ)P )u t (5.4)

until T (or a steady state condition) is reached. Different choices of θ ∈ [0,1] are allowed:

• Forward Euler (θ= 0): an explicit method which converges only if the timestep satisfies

dt<
h2

8
.

This is too expensive for solving Equation (5.4), because the choices allowed for dt are too small.

• Crank - Nicholson (θ= 0.5): an implicit method (or trapezoid rule). The expected order is 2.

• Backward Euler (θ= 1): an implicit method. The expected order is 1.

Once θ is chosen, we have to update u t : this can be performed with direct or iterative methods but

the system (5.1) is non-symmetric so we can’t take advantages from very popular tools in numerical

analysis.

Direct method: the LUpq factorization

The time updating equation (5.4) can be solved with a variant of LU decomposition, called LUpq

which takes advantage from permutations on rows without specifying directly the permutation matrix:

this typically requires less time and less storage space respect the classical L,U,P factorization:
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[L,U,p,q]=lu(I-dt*theta*A,’vector’);

B = (I+dt*(1-theta)*A);

for t = (dt:dt:T)

C = B*y;

y(q) = U\(L\(noto(p)));

end

Iterative method: BiCGStab solver

Because of the dimension of the problem, an iterative method can be used to solve the linear system

(5.4). According to the experiments in [Vogel et al.(2013)], the iterative method BiCGStab, Biconjugate

gradient stabilized method seems to be the faster way to solve the linear system (5.2) with θ-method

(5.4). The key core of iteratives methods, is starting from an approximate solution modifying, at every

iteration, one or more components and trying to minimize the residual norm. For example, if u t is

the solution at step t , we want to minimize Au t − b . More details about the BiCGStab methods used

in our experiments can be found in Section 5.6.

5.4 A Fourier approach

Obviously, the most difficult task in solving Equation (5.4) is to invert the matrix (I − dtθP ). This

could be difficult in the first instance because of unsymmetry of the problem, but we can take advantage

of a Fourier method to invert the term containing the laplacian information. The main drawback of

this method is that it works well for periodic functions or data: in our context image is not periodic

and this could introduce wrong Fourier coefficients. For this reason we mirror the image u as in

Figure 16 to have a periodic signal.

Considering P =∆+D , with∆ as laplacian and D as −div(du), we can split θ in Equation (5.3) in

θ1 and θ2, resulting:

(I − dtθ1∆−dtθ2D)u t+1 = (I + dt(1−θ1)∆+dt(1−θ2)D)u
t .

Finally, setting θ1 = 1 and θ2 = 0, we obtain (I − dtθ1∆)u
t+1 = (I + dtD)u t , so

u t+1 = (I − dt∆)−1(I + dtD)u t . (5.5)

Through a Fourier collocation method we can solve immediately Equation (5.5) writing the solution

u and∆ u in the truncated Fourier series

u =
∑

|k|∞≤N

uke2iπx·k and ∆ u =−
∑

|k|∞≤N

uk4π2|k|2e2iπx·k ,
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Figure 16: Image mirrored to have the correct periodic boundary conditions.

and introducing v such that:
∑

|k|∞≤N

vke2iπx·k = v = (I − dt∆)u =
∑

|k|∞≤N

(1+ dt4π2|k|2)uke2iπx·k .

So, for every k, we obtain vk = (1+ dt4π2|k|2)uk from which:

uk =
vk

(1+ dt4π2|k|2)
,

and the update step is trivial (Algorithm 3). We also note that laplacian coefficients are calculated once:

there is no need to iterate this computation. Visually speaking, evaluating D with finite differences,

produce an acceptable solution despite of a perceptible error from the reference solution (Figure 18e).

Algorithm 3 Semi-implicit solver with bridge Fourier collocation

Input: u0 (original mirrored image, 2D matrix of N rows and M columns), k pixel-indexes.

Output: uT at time T = t end.

1: Evaluate the drift term D with finite difference;

2: coeff= (1+ 4kπ2dt);

3: A= (I + dtD);

4: for t = dt : dt : T do

5: u = reshape(Au(:),N , M );

6: v̂ = fft2(u)./coeff;

7: u = ifft2(v̂);

8: end for

Another Fourier-based implementation is shown in Algorithm 4: since a differentiation in the space

domain is a multiplication with (i k)d in frequency domain (d is the order of the differentiation), we
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can write a semi-implicit scheme, with an explicit calculus of div(du):

∂ u
∂ t
=∆ u − div(du)

u t+1− u t

dt
=∆ u t+1− div(du t )

u t+1− u t = dt∆ u t+1− dtdiv(du t )

u t+1− dt∆ u t+1 = u t − dtdiv(du t ).

Algorithm 4 Semi-implicit solver with fully Fourier collocation

Input: u0 (original image, 2D matrix of N rows and M columns), k pixel-indexes.

Output: uT at time T = t end.

1: define the flag_log= {0,1} variable, useful to change the computation of d.

2: if flag_log then

3: d=∇ log u = ifft2(fft2(log u). ∗ (2πik));

4: else

5: ∇ u = ifft2(fft2(u). ∗ (2πik));

6: d=∇ u./u;

7: end if

8: eventually d= d. ∗ umask in shadow application;

9: coeff= (1− 4kπ2dt);

10: for t = dt : dt : T do

11: div(du) = ifft2((fft2(du). ∗ (2πik)));

12: u = ifft2(fft2(u − dtdiv(du))./coeff);

13: end for

The major advantages of these Fourier semi-implicit methods are the speed up in computational

time while the errors from what we choose as reference solution are concentrated only on big jumps

of color: the upper-bound error allows bigger timesteps than BiCGSstab when solving. This arises

from our experimental results (see Section 5.6).

5.5 Exponential Integrators

The osmosis filter in Equation (5.1) can be also solved as a general differential equation of this type:







y ′(t ) = ay(t )+ b , t > t0

y(t0) = y0,
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where the analytic solution is given from the variation of constants method:

y(t ) = e(t−t0)a y0+
∫ t

t0

e(t−τ)a b (τ, y(τ))dτ.

In fact

y ′(t ) = ae(t−t0)a y0+ a
∫ t

t0

e(t−τ)a b (τ, y(τ))dτ+ e(t−t )a b (t , y(t ))

= ay(t )+ b (t , y(t )).

Remark 5.5. We observe that
∫ t

t0

e(t−τ)a dτ =−1
a

∫ t

t0

−ae(t−τ)a dτ =−1
a

e(t−τ)a
�

�

�

�

�

t

t0

=−1
a

�

1− e(t−t0)a
�

= (t − t0)
e(t−t0)a − 1
(t − t0)a

= (t − t0)ϕ1((t − t0)a) where ϕ1(z) =
ez − 1

z
=
∞
∑

j=0

z j

( j + 1)!
.

Remark 5.6. Let A∈Rn×n a square matrix. We consider

exp(A) =
∞
∑

j=0

Aj

j !
.

There are many different ways to compute exp(A). In our case, A is a big sparse matrix. Moreover we

don’t want an explicit result for exp(A) but we need exp(A) to perform the matrix-vector multiplication

exp(A)v , given v . The well know Krylov methods avoid to compute explicitly exp(A) providing instead

exp(A)v. Based on the Arnoldi technique, we can decompose A in

A=Vm HmV T
m =⇒ V T

m AVm =Hm ,

with Vm ∈ Rn×m and V T
m Vm = I , Vm e1 = v and Hm the almost triangular Hessenberg matrix of

order m (with m� n). Then AVm ≈Vm Hm so

exp(A)Vm ≈Vm exp(Hm) =⇒ exp(A)v ≈Vm exp(Hm)e1

where exp(Hm) is computed via Padè approximation. More details in [Caliari(2013)].

Given the differential equation






y′(t ) =Ay(t )+b(t ,y(t )), t > t0

y(t0) = y0,
(5.6)

the analytic solution can be written as

y(t ) = exp((t − t0)A)y0+
∫ t

t0

exp((t −τ)A)b(τ,y(τ))dτ,

or, written in another way,

y(t ) = exp((t − t0)A)y0+(t − t0)ϕ1((t − t0)A)b= y0+(t − t0)ϕ1((t − t0)A)(Ay0+b).
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Proof. It is trivial to check y(t0) = y0. Moreover, from

d[(t − t0)ϕ1((t − t0)A)b]
dt

= exp((t − t0)A)b= (t − t0)Aϕ1((t − t0)A)b+b,

we have

y′(t ) =Aexp((t − t0)A)y0+ exp((t − t0)A)b

=A[exp((t − t0)A)y0+(t − t0)ϕ1((t − t0)A)b]+b=Ay(t )+b.

So, we can solve the differential Equation (5.6) with the Euler exponential method:

yn+1 = exp(dtA)yn + dtϕ1(dtA)b (tn ,yn) = yn + dtϕ1(dtA)(Ayn +b(tn ,yn)).

Proposition 5.7. The Euler exponential method is exact if b (y(t )) = b (y0)≡ b or of order one otherwise.

Proof. We have

yn+1 = exp(dtA)yn +
∫ tn+1

tn

exp((tn+1−τ)A)b(tn ,yn)dτ

Let g(t ) = b (t ,y(t )), using the variation of constants method we have

y(tn+1)−exp(dtA)y(tn)−
∫ tn+1

tn

exp((tn+1−τ)A)g(tn)dτ

=exp(dtA)y(tn)+
∫ tn+1

tn

exp((tn+1−τ)A)g(τ)dτ

− exp(dtA)y(tn)−
∫ tn+1

tn

exp((tn+1−τ)A)g(tn)dτ

=
∫ tn+1

tn

exp((tn+1−τ)A)(g(tn)+ g′(τn)(τ− tn)− g(tn))dτ

=dt2ϕ2(dtA)g′(τn) = O (dt2), with ϕ2(z) =
ez − 1− z

z2
=
∞
∑

j=0

z j

( j + 2)!
.

For our tests we use the Matlab package in [Al-Mohy and Higham(2011)] to exponentiate the matrix

and we used this solution as reference solution in Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6: the function

used is expmv.m, which is the dedicate function to perform the matrix-vector multiplication with

Exponential Integrators method, whose precision (exact in time from theory) depends only from

the machine precision. We compare also this result with another implementation of Exponential

Integrators found in [Sidje(1998)]: the script used here is expv.m.

5.6 Numerical results

Experiments of Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 are performed on Mac OSX 10.8.5, 2.2 GHz Intel

Core i7 Quad-Core, RAM 4GB 1333 MHz DDR3, with Matlab 2012a 64 bit.
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Order of θ-method

An important question arising when solving a partial different equation is testing the code in order to

produce the true results with the expected accuracy. In this case we don’t know the exact solution:

as far as we know, evolving Equation (5.1) in time converges to a steady state. For this reason we

computed a reference solution with the exponential method, which is exact in time. Another solution

could be evaluate the solution at a finer timestep and estimate the errors on a much coarser timestep. In

this case, the timestep dtref associated to the reference solution must satisfy dtref� dt, for any timestep

dt used to compute the other solutions.
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(a) LUpq, θ= 0.5: we obtain a 2-order slope (blue).
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(b) LUpq, θ= 1: we obtain a 1-order slope (red).

Figure 17: Log-log plot of θ-method’s time order for shadow removal application presented in the

next pages: 1-order slope in red-dashed line while 2-order slope in blu-dashed line.

Remark 5.8. Estimating the error and testing the order of accuracy by this approach only confirm

that the code is converging very nicely to some function with the desired rate. It is very possible that

the code is converging to the wrong function (details in [LeVeque(2007)]). This is not the case so we

leave to the evaluation of how good is the function-image solution to the human visual system (our

eyes).

Error of Fourier methods

In Algorithm 4 we reported two different ways to evaluate the drift vector field d. From our exper-

iments, we noted that the second choice of d, i.e. d = ∇ u/u, is more stable in the sense that the

difference from the reference solution computed with the Exponential Method is concentrated only

on shadow boundaries. This clearly arise from visual consideration on Figure 18. For this reasons in

Tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 and in Figure 21f we consider only the drift vector field d evaluated with

d=∇ u/u when using Algorithm 4. Changing of dt produce only a different error from reference
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(a) Reference with expmv. (b) Alg. 3.

(c) Alg. 4 with d=∇ log u. (d) Alg. 4 with d=∇ u/u.
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(e) Error Alg. 3.
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(f) Error Alg. 4 with d=∇ log u.
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(g) Error Alg. 4 with d=∇ u/u.

Figure 18: Fourier results for Shadow Removal (Section 5.7.1) at T = 1000 with timestep dt= 100.
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solution outside shadow boundary: the maximum error doesn’t seems to change due to the different

operator acting on shadow boundaries (only laplacian) from the rest of the image (laplacian with

divergence): this is in somehow relation to the Gibbs phenomenon.

Remark 5.9. It seems quite obvious that d=∇ log u produce a slightly worse error difference respect

to d=∇ u/u: in fact, the reference solution, evaluated with Exponential Method, is computed by

the finite difference matrix in the space domain, which is based on the discretization of d as∇ u/u

instead of computing directly the discretization of d=∇ log u. For this reason we can’t predict which

method is the best one although we expect that computing d =∇ log u is more coherent with the

original formulation of the system (5.1).

Even if Algorithm 3 seems to produce the worst (but not too distant from the expected solution)

result in Figure 18e, it is the fastest method tested overall (see Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6): for

this reason we claim that for a commercial use of this filter in software products, this is the best choice

because the result 18b is very similar to what we expect. We motivated this error difference from the

reference solution with the separation of the transport operator from the diffusion one.

BiCGStab and variants

In solving Equation (5.4) with BiCGStab, we used various tolerances, summarized in Tables 5.1, 5.2,

5.3, 5.4, 5.5 and 5.6. The maximum number of iteration allowed are maxit= 30 and the initial timestep

is dt= 1. Different from [Vogel et al.(2013)], we rescaled our data in [ε, 255+ε]/(255+ε), with ε= 1,

insted of [ε, 255+ ε] and we assume that the Ground Truth is unknown: for this reason we need a

different stopping criterion respect to to that used in [Vogel et al.(2013)]. In particular, this is the most

common case where the Ground Truth depends only by the visual expectations of the user.

We compare BiCGStab in four variants:

• BiCGStab: the classical BiCGStab method, with fixed timestep dt with updating solution until

a fixed time T is reached;

• A-BiCGStab: as BiCGStab but we used the starting dt only for the first computation; then

timestep can be update at every computation:

1. we compute an average iteration value desired for BiCGStab with averit = 35*maxit/50,

and a safe zone where dt will not be changed:

safe_zone= [0.8 · averit, 1.2 · averit];
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2. then we update dt until T is reached with the following experimental rule:

dt(t + 1) =







































1.2 · dt(t ) if BiCGStab converges in k <min(safe_zone) steps;

1.0 · dt(t ) if BiCGStab converges in k ∈ safe_zone steps;

0.8 · dt(t ) if BiCGStab converges in k >max(safe_zone) steps;

0.5 · dt(t ) otherwise (don’t increasing t );

(5.7)

• F-BiCGStab: as BiCGStab but the alghoritm stops only when the difference between the new

solution and the previous one is under a fixed tolerance (weighted by the fixed timestep):

norm(y_new-y)/norm(y_new) < dt * tol_exit;

• FA-BiCGStab: as A-BiCGStab but the algorithm stops only when the difference between the

new solution and the previous one is under a fixed tolerance (weighted by the current timestep):

norm(y_new-y)/norm(y_new) < dt(t) * tol_exit;

Because of BiCGStab can be called in Matlab with several different parameters, we tested some

different situations: firstly, we focused our attention on the difference between the following command

lines

y = bicgstab(I-dt*theta*A,(I + dt*(1-theta)*A)*y,tol,maxit);

y = bicgstab(I-dt*theta*A,(I + dt*(1-theta)*A)*y,tol,maxit,[],[],y);

where the second line refers to BiCGStab with an initial guessing vector (or solution at the previous

timestep): during our tests, the second command line performed better than the first one, where

BiCGStab starts with a zero guessing vector: this is reasonable because the initial guess vector (or

solution at the previous timestep) is near, in some sense, to the expected solution and this shorts

iterations and computation time. For this reason we skipped to report the results from the first

command line in Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6.

Then we use a preconditioner in order to speed up the computations: unfortunately, the matrix

is unsymmetric so we are forced to use the ilu function which performs a sparse incomplete LU

factorization (a unit lower triangular matrix and an upper triangular matrix): for this reason, Tables

5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 reports the outputs from the following command lines:

y = bicgstab(I-dt*theta*A,(I + dt*(1-theta)*A)*y,tol,maxit,[],[],y);

y = bicgstab(I-dt*theta*A,(I + dt*(1-theta)*A)*y,tol,maxit,L,U,y);

Visually speaking, when comparing the solution obtained with F-BiCGStab and FA-BiCGStab,

we observed a more reliable result with the preconditioning matrix because the greedy algorithm
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(a) BiCGStab: norm(y).
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(b) BiCGStab: Iters.
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(c) BiCGStab: dt.
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(d) A-BiCGStab: norm(y).
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(e) A-BiCGStab: Iters.
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(f) A-BiCGStab: dt.
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(g) A-BiCGStab+ilu: norm(y).
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(h) A-BiCGStab+ilu: Iters.
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(i) A-BiCGStab+ilu: dt.
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(j) FA-BiCGStab+ilu: norm(y).
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(k) FA-BiCGStab+ilu: Iters.
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(l) FA-BiCGStab+ilu: dt.

Figure 19: Different calls of BiCGStab to Shadow Removal problem to prove the adaptivity of the

algorithm. Results form Table 5.3 with θ= 0.5 (only red channel). We notice the conver-

gence to a steady state and the adaptivity of the timestep as imposed in Equation (5.7). In

particular, we compare Figures 19e, 19h and 19k: these clearly show the oscillation on the

average valued imposed. Figures 19i, 19f and 19l report the length of timestep used: this

confirm the adaptivity of the proposed methods.
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written under the rule of Equation (5.7) seems to use bigger timesteps when preconditioning (see

Figure 19f and 19i), providing a bigger exit time T (or a transient state closer to the steady state). In

our tests we used a small (but not too small) value of dt because we believe that the first drift-diffusion

steps are the most important to propagate the data in and out the shadow domain: in particular,

FA-BiCGStab will adapt to the current situation improving the computation time and the accuracy of

the expected result. Conversely, a too small starting value of dt is deprecable because the difference of

two contiguous solution could be very small satisfying the stopping condition before than expected

(even if this condition is weighted by the current dt).

5.7 Applications

Shadow Removal

The ability of the drift-diffusion Equation (5.1) to be invariant under multiplicative grayscale allows

us to model shadows as a local multiplicative illumination change within the image. This affects only

the canonical drift vectors at the shadows boundaries, the transition locus between the shadows and

the non shadows. To complete this task we need as input the original image with a shadow boundary

marked in a separate layer as in Figure 20b. Recovering the shadow edges requires other techniques

and it is not an argument of this work.

(a) Original image with shadow. (b) Shadow boundaries.

Figure 20: Data to be known for Shadow Removal.

We can take great advantages from the preservation of average gray value (or color value in each

channel), which we have seen to be a key property in order to preserve all information stored in the

input image. However, once reached the final step desired, we note that the output image is darker

than the one expected: roughly speaking, this phenomenon can be understood as if every pixel outside

the shadow domain absorbs the a part of the shadow coefficient. For this reason one could adjust the

output image to match the data outside the shadow region with the same data of the original image.
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(a) Original image with shadow. (b) Reference with expmv.

(c) LUpq, θ= 1. (d) A-BiCGStab + ilu, θ= 0.5.

(e) Fourier Alg. 3. (f) Fourier Alg. 4.

Figure 21: Results from Table 5.3 at T = 1000. Fourier results from Figure 18. We observe the visually

equivalence of the results. The output is darker than the original because of the diffusion

combined with average gray preservation property of the PDE. A global multiplicative

factor can be recovered comparing non-shadows area in input and output figures.

Remark 5.10. Only diffusion, i.e. the laplacian operator, acts on boundary inpainting domain so a

smooth effect is clearly visible: this can be removed with any of inpainting techniques of Chapter 4.

Remark 5.11. The shadow boundaries detection has been exploited in various researches through

last years, for example in [Finlayson et al.(2004), Finlayson et al.(2006), Finlayson et al.(2009)]: these

papers are based on the projection of the geometric-mean chromaticity, defined as Ci/
3
p

R ·G ·B with

Ci = R,G or B , of an RGB image onto a subspace of R3. The minimum entropy of these projections
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(a) F-BiCGStab, θ= 0.5. (b) F-BiCGStab + ilu, θ= 0.5.

(c) FA-BiCGStab, θ= 0.5. (d) FA-BiCGStab + ilu, θ= 0.5.

Figure 22: Shadow Removal example. Results from Table 5.3 when the exit time condition is fulfilled.

provides an invariant chromaticity. This will be then compared with the original chromaticity to

compute the edge strength. So the key idea is to separate the edge in two categories: edges appearing

in both chromaticity images (the real edges on the scene) and edges appearing only in the original

chromaticity but not in the invariant one (the real shadow edges). Unfortunately, according to the

authors of this method, an acceptable result can be obtained with an uncompressed input image, very

similar to the RAW image captured by the camera sensor. Other methods are based on comparison

between the same scene under flash and no-flash illumination [Drew et al.(2006)]. For these reasons,

we assume to know the shadow boundaries to be used in our drift-diffusion equation as the place

where to impose a zero drift vector field.

Seamless image cloning

Osmosis filter can also be used to fuse incompatible information in seamless image cloning process.

The problem can be addressed as the following: given the image domain Ω and two images f1 and f2,

we suppose that f1 and f2 share the same image domain. We want to merge a portion of f1 with the

data in f2. In general, it is sufficient to know the domain of f2 to be cloned in f1, with the pixels in f1
to be substituted. We call the image domain to be cloned as Γ and its boundary is given by ∂ Γ . We

suppose also to know f1 and f2 at ∂ Γ .
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(a) Parameters: θ= 0.5, dt= 1, tol_bicgstab=10−05, tol_exit=10−06 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 8349 7415.79 1000 1000 1804 7915.44

I - 2684.5 948 13447.5 2948 1516.5 342 2432.5 972

R - 0 0 0 4 0 0 0 0

E 1.47e-08 6.71e-03 1.30e-03 - - 9.82e-05 1.24e-03 - -

C 86.80 139.00 17.88 988.69 54.38 191.49 14.41 319.72 34.48

(b) Parameters: θ= 1, dt= 1, tol_bicgstab=10−05, tol_exit=10−06 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 2090 7999.14 1000 1000 1805 8247.86

I - 2924.5 1092.5 4997.5 2837 1531.5 494.5 2449.5 1396

R - 0 1 0 13 0 0 0 1

E 4.59e-05 4.47e-03 7.58e-03 - - 1.93e-04 4.09e-03 - -

C 84.27 118.93 20.08 230.59 56.14 175.20 18.40 292.16 47.36

(c) Comparison between best cputimes (from Table 5.1a and 5.1b at T = 1000 with dt = 1) of LUpq and

BiCGStab with expv and Fourier (F.) (Alg. 3 and Alg. 4). For Fourier experiments we choose dt = 100,

according to experiments in Figure 18.

Ref. expmv LUpq BiCGStab BiCGStab + ilu expv F. Alg. 3 F. Alg. 4

T 1000 1000 1000 1000 1000 1000 1000

θ - 1 0.5 0.5 - - -

I - - 948 342 - - -

R - - 0 0 - - -

E - 4.59e-05 1.30e-03 1.24e-03 1.73e-04 0.1275 0.1080

C 206.26 84.27 17.88 14.41 25.07 4.80 10.94

Table 5.1: Shadow Removal results for Figure 21. Results in red are visually wrong (e.g. imperfections

across shadow boundaries or output in F-BiCGStab or FA-BiCGStab far away from the

expected solution due to exit condition). Legend: I=Iterations, R=Refused steps, E=Error

from reference solution (or, better, the difference from the reference solution), C=Cputime.
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(a) Parameters: θ= 0.5, dt= 1, tol_bicgstab=10−05, tol_exit=10−07 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 8349 24686.12 1000 1000 1804 24741.28

I - 2684.5 948 13447.5 6664.5 1516.5 342 2432.5 1438.5

R - 0 0 0 6 0 0 0 0

E 1.47e-08 6.71e-03 1.30e-03 - - 9.82e-05 1.24e-03 - -

C 86.80 136.74 17.97 996.30 119.62 194.68 14.48 321.95 49.26

(b) Parameters: θ= 1, dt= 1, tol_bicgstab=10−05, tol_exit=10−07 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 2090 23082.62 1000 1000 1805 23520.25

I - 2924.5 1092.5 4997.5 4072 1531.5 494.5 2449.5 2036

R - 0 1 0 20 0 0 0 1

E 4.59e-05 4.47e-03 7.58e-03 - - 1.93e-04 4.07e-03 - -

C 84.27 120.02 20.25 231.70 81.21 175.94 18.41 295.87 67.42

(c) Comparison between best cputimes (from Table 5.2a and 5.2b at T = 1000 with dt = 1) of LUpq and

BiCGStab with expv and Fourier (F.) (Alg. 3 and Alg. 4). For Fourier experiments we choose dt = 100,

according to experiments in Figure 18.

Ref. expmv LUpq BiCGStab BiCGStab + ilu expv F. Alg. 3 F. Alg. 4

T 1000 1000 1000 1000 1000 1000 1000

θ - 1 0.5 0.5 - - -

I - - 948 342 - - -

R - - 0 0 - - -

E - 4.59e-05 1.30e-03 1.24e-03 1.73e-04 0.1275 0.1080

C 206.26 84.27 17.97 14.48 25.07 4.80 10.94

Table 5.2: Shadow Removal results for Figure 21. Results in red are visually wrong (e.g. imperfections

across shadow boundaries or output in F-BiCGStab or FA-BiCGStab far away from the

expected solution due to exit condition). Legend: I=Iterations, R=Refused steps, E=Error

from reference solution (or, better, the difference from the reference solution), C=Cputime.
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(a) Parameters: θ= 0.5, dt= 1, tol_bicgstab=10−06, tol_exit=10−06 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 5963 7177.26 1000 1000 6933 7579.16

I - 2968.5 1359 15394 4082 1585 516 9979.5 1485

R - 0 0 0 4 0 0 0 2

E 1.47e-08 1.68e-04 1.19e-03 - - 1.03e-04 1.21e-03 - -

C 86.80 138.12 24.43 804.32 73.34 192.73 19.37 1308.37 51.36

(b) Parameters: θ= 1, dt= 1, tol_bicgstab=10−06, tol_exit=10−06 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 5618 7798.39 1000 1000 6935 7856.53

I - 3306.5 1717 15897.5 4529.5 1785 753 10180.5 2298.5

R - 0 1 0 13 0 0 0 2

E 4.59e-05 1.47e-04 4.53e-03 - - 2.04e-04 3.94e-03 - -

C 84.27 125.36 30.04 679.08 83.84 181.92 25.63 1203.16 75.19

(c) Comparison between best cputimes (from Table 5.3a and 5.3b at T = 1000 with dt = 1) of LUpq and

BiCGStab with expv and Fourier (F.) (Alg. 3 and Alg. 4). For Fourier experiments we choose dt = 100,

according to experiments in Figure 18.

Ref. expmv LUpq BiCGStab BiCGStab + ilu expv F. Alg. 3 F. Alg. 4

T 1000 1000 1000 1000 1000 1000 1000

θ - 1 0.5 0.5 - - -

I - - 1359 516 - - -

R - - 0 0 - - -

E - 4.59e-05 1.19e-03 1.21e-03 1.73e-04 0.1275 0.1080

C 206.26 84.27 24.43 19.37 25.07 4.80 10.94

Table 5.3: Shadow Removal results for Figure 21. Results in red are visually wrong (e.g. imperfections

across shadow boundaries or output in F-BiCGStab or FA-BiCGStab far away from the

expected solution due to exit condition). Legend: I=Iterations, R=Refused steps, E=Error

from reference solution (or, better, the difference from the reference solution), C=Cputime.
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(a) Parameters: θ= 0.5, dt= 1, tol_bicgstab=10−06, tol_exit=10−07 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 16982 22945.86 1000 1000 6934 23153.42

I - 2968.5 1359 31675 7215.5 1585 516 9979.5 2311

R - 0 0 0 11 0 0 0 2

E 1.47e-08 1.68e-04 1.19e-03 - - 1.03e-04 1.21e-03 - -

C 86.80 139.48 24.63 2094.52 131.96 194.28 19.5 1313.19 77.4

(b) Parameters: θ= 1, dt= 1, tol_bicgstab=10−06, tol_exit=10−07 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 7506 22761.78 1000 1000 6935 23162.34

I - 3306.5 1717 20274.5 7111 1785 753 10180.5 3498.5

R - 0 1 0 23 0 0 0 6

E 4.59e-05 1.47e-04 4.53e-03 - - 2.04e-04 3.94e-03 - -

C 84.27 126.64 30.45 897.3 134.36 182.08 25.88 1206.13 116.62

(c) Comparison between best cputimes (from Table 5.4a and 5.4b at T = 1000 with dt = 1) of LUpq and

BiCGStab with expv and Fourier (F.) (Alg. 3 and Alg. 4). For Fourier experiments we choose dt = 100,

according to experiments in Figure 18.

Ref. expmv LUpq BiCGStab BiCGStab + ilu expv F. Alg. 3 F. Alg. 4

T 1000 1000 1000 1000 1000 1000 1000

θ - 1 0.5 0.5 - - -

I - - 1359 516 - - -

R - - 0 0 - - -

E - 4.59e-05 1.19e-03 1.21e-03 1.73e-04 0.1275 0.1080

C 206.26 84.27 24.63 19.5 25.07 4.80 10.94

Table 5.4: Shadow Removal results for Figure 21. Results in red are visually wrong (e.g. imperfections

across shadow boundaries or output in F-BiCGStab or FA-BiCGStab far away from the

expected solution due to exit condition). Legend: I=Iterations, R=Refused steps, E=Error

from reference solution (or, better, the difference from the reference solution), C=Cputime.
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(a) Parameters: θ= 0.5, dt= 1, tol_bicgstab=10−07, tol_exit=10−06 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 6868 7464.87 1000 1000 6933 7341.04

I - 3398.5 1872 18621.5 5992.5 3066 680.5 12295 2233

R - 0 4 0 15 0 0 0 1

E 1.47e-08 2.24e-05 4.08e-03 - - 9.58e-06 1.20e-03 - -

C 86.80 152.28 35.32 949.07 112.82 234.71 24.36 1383.97 73.92

(b) Parameters: θ= 1, dt= 1, tol_bicgstab=10−07, tol_exit=10−06 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 6867 7674.77 1000 1000 6935 7423.52

I - 4032.5 2407.5 20732.5 6524.5 3332.5 1036 15644 3576

R - 0 4 0 27 0 0 0 4

E 4.59e-05 6.52e-05 4.80e-03 - - 7.21e-05 3.22e-03 - -

C 84.27 138.65 43.60 874.73 126.36 225.51 34.36 1360.56 116.99

(c) Comparison between best cputimes (from Table 5.5a and 5.5b at T = 1000 with dt = 1) of LUpq and

BiCGStab with expv and Fourier (F.) (Alg. 3 and Alg. 4). For Fourier experiments we choose dt = 100,

according to experiments in Figure 18.

Ref. expmv LUpq BiCGStab BiCGStab + ilu expv F. Alg. 3 F. Alg. 4

T 1000 1000 1000 1000 1000 1000 1000

θ - 1 0.5 0.5 - - -

I - - 1872 680.5 - - -

R - - 4 0 - - -

E - 4.59e-05 4.08e-03 1.20e-03 1.73e-04 0.1275 0.1080

C 206.26 84.27 35.32 24.36 25.07 4.80 10.94

Table 5.5: Shadow Removal results for Figure 21. Results in red are visually wrong (e.g. imperfections

across shadow boundaries or output in F-BiCGStab or FA-BiCGStab far away from the

expected solution due to exit condition). Legend: I=Iterations, R=Refused steps, E=Error

from reference solution (or, better, the difference from the reference solution), C=Cputime.
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(a) Parameters: θ= 0.5, dt= 1, tol_bicgstab=10−07, tol_exit=10−07 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 16619 23061.54 1000 1000 20430 24228.54

I - 3398.5 1872 38248 11660 3066 680.5 27837.5 3859

R - 0 4 0 24 0 0 0 7

E 1.47e-08 2.24e-05 4.09e-03 - - 9.58e-06 1.20e-03 - -

C 86.80 147.61 35.2 1996 215.72 233.46 24.33 3428.48 130.35

(b) Parameters: θ= 1, dt= 1, tol_bicgstab=10−07, tol_exit=10−07 and maxit= 30.

LUpq BiCGStab BiCGStab + ilu

- A F FA - A F FA

T 1000 1000 1000 15358 22299.95 1000 1000 20433 21338.26

I - 4032.5 2407.5 39377.5 10806 3332.5 1036 31189 5774.5

R - 0 4 0 47 0 0 0 6

E 4.59e-05 6.59e-05 4.80e-03 - - 7.21e-05 3.22e-03 - -

C 84.27 137.13 43.44 1748.14 209.73 225.12 34.25 3240.42 187.02

(c) Comparison between best cputimes (from Table 5.6a and 5.6b at T = 1000 with dt = 1) of LUpq and

BiCGStab with expv and Fourier (F.) (Alg. 3 and Alg. 4). For Fourier experiments we choose dt = 100,

according to experiments in Figure 18.

Ref. expmv LUpq BiCGStab BiCGStab + ilu expv F. Alg. 3 F. Alg. 4

T 1000 1000 1000 1000 1000 1000 1000

θ - 1 0.5 0.5 - - -

I - - 1872 680.5 - - -

R - - 4 0 - - -

E - 4.59e-05 4.09e-03 1.20e-03 1.73e-04 0.1275 0.1080

C 206.26 84.27 35.2 24.33 25.07 4.80 10.94

Table 5.6: Shadow Removal results for Figure 21. Results in red are visually wrong (e.g. imperfections

across shadow boundaries or output in F-BiCGStab or FA-BiCGStab far away from the

expected solution due to exit condition). Legend: I=Iterations, R=Refused steps, E=Error

from reference solution (or, better, the difference from the reference solution), C=Cputime.



112 5. A Drift Diffusion approach for Shadow Removal

(a) Euler. (b) Lagrange.

f2

Γ

∂ Γ

f1

Ω

(c) Domain notation.

(d) Input. (e) [Pérez et al.(2003)]. (f) Osmosis filter.

Figure 23: Seamless image cloning. Figure 23e from [Weickert et al.(2013)] differs from our test for the

cloning domain but the visual expectation of more natural transient zone between f1 and

f2 in Figure 23f is confirmed as expected. Source of original images: Wikimedia Commons.

The most famous attempt to solve this problem is Poisson image editing in [Pérez et al.(2003)].

Referred to notation in Figure 23c, the simplest interpolant f2 of f1 over Γ is the membrane interpolant

defined as the solution of the minimization problem:

min
f2

∫ ∫

Γ
|∇ f2|

2 with f2|∂ Γ = f1|∂ Γ . (5.8)

The minimizer must satisfy the associated Euler-Lagrange equation






∆ f2 = 0, on Γ ,

f2 = f1, on ∂ Γ .

However, this method produces an unsatisfactory, blurred interpolant. For this reason, a guidance

vector field p is introduced in an extended version of the minimization problem (5.8):

min
f2

∫ ∫

Γ
|∇ f2−p| with f2|∂ Γ = f1|∂ Γ ,
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whose solution is the unique solution of the following Poisson equation with Dirichlet boundary

conditions:






∆ f2 = divp, on Γ

f2 = f1, on ∂ Γ ,
(5.9)

where divp=
∂ u
∂ x
+
∂ v
∂ y

is the divergence of p= (u, v). This is the fundamental machinery of Poisson

editing of color images: three Poisson equations of the form (5.9) are solved independently in the

three color channels of the chosen color space. When the guidance field p is conservative, i.e. it is the

gradient of some function g , a helpful alternative way of understanding what Poisson interpolation

does is to define the correction function ef2 on Γ such that f2 = g + ef2. The Poisson equation (5.9) then

becomes the following Laplace equation with boundary conditions:







∆ ef2 = 0, on Γ ,

ef2 = ( f1− g ), on ∂ Γ .

Therefore, inside Γ , the additive correction ef is a membrane interpolant of the mismatch ( f1− g )

between the source and the destination along the boundary ∂ Γ .

So, imposing p=∇ f2 in Γ and Dirichlet boundary conditions f2 = f1 on ∂ Γ in Equation (5.9), we

can obtain a nice image but this method it is not able to match the different illumination of f1 and f2.

Now, to provide a seamless osmotic cloning using the drift-diffusion model proposed in Equation (5.1),

we use the canonical drift vectors on f1 in Ω \ Γ and the ones in f2 in Γ while, at the interface ∂ Γ , we

use the arithmetic mean of both drift vectors: this returns smoother results than [Pérez et al.(2003)]

as we can see in Figure 23.





CHAPTER 6
Conclusion and future works

We showed a connection between NL-Poisson inpainting approach by [Arias et al.(2011)] and the

drift-diffusion equation by [Weickert et al.(2013)]. We deepened these two arguments in separated

topics: the former recalls some definitions and useful properties of BV space (the appropriate set where

to model most of the problems in Computer Vision) with a presentation of different approaches

based on curvature and patch comparison for the inpainting problem; the latter with some numerical

experiments that introduce fast methods in solving the drift-diffusion equation. In particular, we state

that BiCGStab method, or its variants, needs a small initial timestep for converging to the steady state

when the reference solution is unknown (this is the most common case for the applications we have in

mind), but this is not the best choice yet to speed up the cputime: it may be more convenient to use a

Fourier approach with a fixed big final time (or with a stopping criterion similar to that one used for

BiCGStab experiments) where we expect that the steady state is reached, accepting a small, but still

undetectable at our eyes, error based on Gibbs phenomenon or based on separation of the drift step

from the diffusion step.

From our experiments, clearly arise that relaxing conditions on expected accuracy don’t compromise

at all the visual steady state result: this could be acceptable for most of the users with the advantage

of a terrific speed up in computations, especially when using Fourier methods with large timesteps.

However, where a better control on solution accuracy is needed, we proposed some BiCGStab variants

to adapt the timesteps used to the iterations of BiCGStab.

As future works we expect to provide a better control on stopping criterion for BiCGStab iterations,

in order to prevent false steady state convergence. Moreover, the problem in recognizing the shadow

area is not solved at all, especially when the shadow is not a costant. For this reasons, we expect that

the use of an exemplar-based variational model could inpaint the shadow area not with the creation of

an admissible texture missed, but restoring the true lighting coefficient.
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