
Nonequispaced Fast Fourier Transform
and Applications

Simone Parisotto
simone.parisotto@tin.it

University of Verona
Faculty of Mathematical Physical and Natural Science

-
Bachelor’s Degree Course in Applied Mathematics

October 15th 2010

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 1 / 20

Index
1 Theory of Fourier Series

Trigonometric Polynomials
Fourier Series for 2π-periodic functions
Convergence results

2 An approximation for the Fourier Series
DFT: Discrete Fourier Trasform
Error estimate

3 Equispaced MFT and FFT
Equispaced Matrix Fourier Transform
Equispaced Fast Fourier Transform
Computational cost and comparison between MFT and FFT

4 Nonequispaced DFT and FFT
Nonequispaced DFT
Nonequispaced FFT: alghoritm and error estimation
Comparison between MFT, FFT and NFFT

5 NFFT in solving hyperbolic PDE
A standard hyperbolic PDE
Solution of an hyperbolic PDE* on equispaced nodes
Example

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 2 / 20

Theory of Fourier Series Trigonometric Polynomials

Trigonometric Polynomials

Introduction: J. Fourier (superposition principle)

Definition (Trigonometric Polynomial of order m and 2π-periodic)

Pm(x) = a0 +
m∑

k=1

(ak cos kx + bk sin kx), with ak , bk ∈ C

An orthogonal basis for 2π-periodic functions

Let B =
{
cos nx , sin nx , n ∈ N

}
with an inner product 〈u, v〉 =

∫ 2π

0
u(x)v(x) dx ;

a norm ||u|| =
√
〈u, u〉.

Proof of orthogonality

〈cosmx, cos nx〉 =


π if m 6= n,
2π if m = n = 0,
0 otherwise;

〈sinmx, sin nx〉 =
{
π if m 6= n,
0 otherwise; 〈cosmx, sin nx〉 = 0.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 3 / 20

Theory of Fourier Series Trigonometric Polynomials

Trigonometric Polynomials

Introduction: J. Fourier (superposition principle)

Definition (Trigonometric Polynomial of order m and 2π-periodic)

Pm(x) = a0 +
m∑

k=1

(ak cos kx + bk sin kx), with ak , bk ∈ C

An orthogonal basis for 2π-periodic functions

Let B =
{
cos nx , sin nx , n ∈ N

}
with an inner product 〈u, v〉 =

∫ 2π

0
u(x)v(x) dx ;

a norm ||u|| =
√
〈u, u〉.

Proof of orthogonality

〈cosmx, cos nx〉 =


π if m 6= n,
2π if m = n = 0,
0 otherwise;

〈sinmx, sin nx〉 =
{
π if m 6= n,
0 otherwise; 〈cosmx, sin nx〉 = 0.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 3 / 20

Theory of Fourier Series Trigonometric Polynomials

Trigonometric Polynomials

Introduction: J. Fourier (superposition principle)

Definition (Trigonometric Polynomial of order m and 2π-periodic)

Pm(x) = a0 +
m∑

k=1

(ak cos kx + bk sin kx), with ak , bk ∈ C

An orthogonal basis for 2π-periodic functions

Let B =
{
cos nx , sin nx , n ∈ N

}
with an inner product 〈u, v〉 =

∫ 2π

0
u(x)v(x) dx ;

a norm ||u|| =
√
〈u, u〉.

Proof of orthogonality

〈cosmx, cos nx〉 =


π if m 6= n,
2π if m = n = 0,
0 otherwise;

〈sinmx, sin nx〉 =
{
π if m 6= n,
0 otherwise; 〈cosmx, sin nx〉 = 0.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 3 / 20

Theory of Fourier Series Trigonometric Polynomials

Trigonometric Polynomials

Introduction: J. Fourier (superposition principle)

Definition (Trigonometric Polynomial of order m and 2π-periodic)

Pm(x) = a0 +
m∑

k=1

(ak cos kx + bk sin kx), with ak , bk ∈ C

An orthogonal basis for 2π-periodic functions

Let B =
{
cos nx , sin nx , n ∈ N

}
with an inner product 〈u, v〉 =

∫ 2π

0
u(x)v(x) dx ;

a norm ||u|| =
√
〈u, u〉.

Proof of orthogonality

〈cosmx, cos nx〉 =


π if m 6= n,
2π if m = n = 0,
0 otherwise;

〈sinmx, sin nx〉 =
{
π if m 6= n,
0 otherwise; 〈cosmx, sin nx〉 = 0.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 3 / 20

Theory of Fourier Series Fourier Series for 2π-periodic functions

Fourier Series for 2π-periodic and l -periodic functions

Trigonometric Fourier Series (T = 2π)

f (x) ≈
a0
2

+
∞∑

k=1

(ak cos kx +bk sin kx), x ∈ [0, 2π)

a0 =
1

π

∫ 2π

0
f (x) dx, ak =

1

π

∫ 2π

0
f (x) cos kx dx,

bk =
1

π

∫ 2π

0
f (x) sin kx dx.

Exponential Fourier Series (T = 2π)

f (x) ≈
+∞∑

k=−∞
cke ikx , x ∈ [0, 2π)

ck =
1

2π

∫ 2π

0
f (x)e−ikx dx.

Some useful identities

eiθ = cos θ + i sin θ;

cos x = (eix + e−ix)/2;

sin x = (eix − e−ix)/2;

ak = ck + c−k ;

bk = i(ck − c−k);

c0 = a0/2;

ck = (ak − ibk)/2;

c−k = (ak + ibk)/2.

Trigonometric and Exponential Fourier Series (T = l = b − a):

Replacing with 2π(x − a)/(b − a), x ∈ [a, b);

Changing the extremes of integration with a and b;

Replacing with 2/(b − a) (Trigonometric FS), with 1/(b − a) (Exponential FS).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 4 / 20

Theory of Fourier Series Fourier Series for 2π-periodic functions

Fourier Series for 2π-periodic and l -periodic functions

Trigonometric Fourier Series (T = 2π)

f (x) ≈
a0
2

+
∞∑

k=1

(ak cos kx +bk sin kx), x ∈ [0, 2π)

a0 =
1

π

∫ 2π

0
f (x) dx, ak =

1

π

∫ 2π

0
f (x) cos kx dx,

bk =
1

π

∫ 2π

0
f (x) sin kx dx.

Exponential Fourier Series (T = 2π)

f (x) ≈
+∞∑

k=−∞
cke ikx , x ∈ [0, 2π)

ck =
1

2π

∫ 2π

0
f (x)e−ikx dx.

Some useful identities

eiθ = cos θ + i sin θ;

cos x = (eix + e−ix)/2;

sin x = (eix − e−ix)/2;

ak = ck + c−k ;

bk = i(ck − c−k);

c0 = a0/2;

ck = (ak − ibk)/2;

c−k = (ak + ibk)/2.

Trigonometric and Exponential Fourier Series (T = l = b − a):

Replacing with 2π(x − a)/(b − a), x ∈ [a, b);

Changing the extremes of integration with a and b;

Replacing with 2/(b − a) (Trigonometric FS), with 1/(b − a) (Exponential FS).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 4 / 20

Theory of Fourier Series Fourier Series for 2π-periodic functions

Fourier Series for 2π-periodic and l -periodic functions

Trigonometric Fourier Series (T = 2π)

f (x) ≈
a0
2

+
∞∑

k=1

(ak cos kx +bk sin kx), x ∈ [0, 2π)

a0 =
1

π

∫ 2π

0
f (x) dx, ak =

1

π

∫ 2π

0
f (x) cos kx dx,

bk =
1

π

∫ 2π

0
f (x) sin kx dx.

Exponential Fourier Series (T = 2π)

f (x) ≈
+∞∑

k=−∞
cke ikx , x ∈ [0, 2π)

ck =
1

2π

∫ 2π

0
f (x)e−ikx dx.

Some useful identities

eiθ = cos θ + i sin θ;

cos x = (eix + e−ix)/2;

sin x = (eix − e−ix)/2;

ak = ck + c−k ;

bk = i(ck − c−k);

c0 = a0/2;

ck = (ak − ibk)/2;

c−k = (ak + ibk)/2.

Trigonometric and Exponential Fourier Series (T = l = b − a):

Replacing with 2π(x − a)/(b − a), x ∈ [a, b);

Changing the extremes of integration with a and b;

Replacing with 2/(b − a) (Trigonometric FS), with 1/(b − a) (Exponential FS).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 4 / 20

Theory of Fourier Series Fourier Series for 2π-periodic functions

Fourier Series for 2π-periodic and l -periodic functions

Trigonometric Fourier Series (T = 2π)

f (x) ≈
a0
2

+
∞∑

k=1

(ak cos kx +bk sin kx), x ∈ [0, 2π)

a0 =
1

π

∫ 2π

0
f (x) dx, ak =

1

π

∫ 2π

0
f (x) cos kx dx,

bk =
1

π

∫ 2π

0
f (x) sin kx dx.

Exponential Fourier Series (T = 2π)

f (x) ≈
+∞∑

k=−∞
cke ikx , x ∈ [0, 2π)

ck =
1

2π

∫ 2π

0
f (x)e−ikx dx.

Some useful identities

eiθ = cos θ + i sin θ;

cos x = (eix + e−ix)/2;

sin x = (eix − e−ix)/2;

ak = ck + c−k ;

bk = i(ck − c−k);

c0 = a0/2;

ck = (ak − ibk)/2;

c−k = (ak + ibk)/2.

Trigonometric and Exponential Fourier Series (T = l = b − a):

Replacing with 2π(x − a)/(b − a), x ∈ [a, b);

Changing the extremes of integration with a and b;

Replacing with 2/(b − a) (Trigonometric FS), with 1/(b − a) (Exponential FS).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 4 / 20

Theory of Fourier Series Convergence results

Convergence Results

Theorem (Some type of Convergences)

Let f (x) a 2π-periodic and C1-piecewise function on the interval [0, 2π). Then, the Fourier Series of f (x) converges

uniformly to f (x) on every compact set which does not contain any discontnuity point;

to the average of right and left limits of f to x∗ if x∗ is a discontinuity point;

Let f (x) a 2π-periodic function on the interval [0, 2π), with
∫ 2π

0
|f (x)|2dx < +∞, then

∫ 2π

0
|f (x)− fN (x)|2dx ≤

∫ 2π

0
|f (x)− PN (x)|2

for any trigonometric polynomial PN of order N (2nd order mean), and

lim
N→+∞

∫ 2π

0
|f (x)− fN (x)|2dx = 0.

Bessel–Parseval Identity

In the same previous hypotheses:
1

π

∫ 2π

0
|f (x)|2dx =

a0

2
+
∞∑
n=1

(
|ak |

2 + |bk |
2
)

= 2
∑
k∈Z
|ck |

2
.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 5 / 20

Theory of Fourier Series Convergence results

Convergence Results

Theorem (Some type of Convergences)

Let f (x) a 2π-periodic and C1-piecewise function on the interval [0, 2π). Then, the Fourier Series of f (x) converges

uniformly to f (x) on every compact set which does not contain any discontnuity point;

to the average of right and left limits of f to x∗ if x∗ is a discontinuity point;

Let f (x) a 2π-periodic function on the interval [0, 2π), with
∫ 2π

0
|f (x)|2dx < +∞, then

∫ 2π

0
|f (x)− fN (x)|2dx ≤

∫ 2π

0
|f (x)− PN (x)|2

for any trigonometric polynomial PN of order N (2nd order mean), and

lim
N→+∞

∫ 2π

0
|f (x)− fN (x)|2dx = 0.

Bessel–Parseval Identity

In the same previous hypotheses:
1

π

∫ 2π

0
|f (x)|2dx =

a0

2
+
∞∑
n=1

(
|ak |

2 + |bk |
2
)

= 2
∑
k∈Z
|ck |

2
.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 5 / 20

Theory of Fourier Series Convergence results

Convergence Results

Theorem (Some type of Convergences)

Let f (x) a 2π-periodic and C1-piecewise function on the interval [0, 2π). Then, the Fourier Series of f (x) converges

uniformly to f (x) on every compact set which does not contain any discontnuity point;

to the average of right and left limits of f to x∗ if x∗ is a discontinuity point;

Let f (x) a 2π-periodic function on the interval [0, 2π), with
∫ 2π

0
|f (x)|2dx < +∞, then

∫ 2π

0
|f (x)− fN (x)|2dx ≤

∫ 2π

0
|f (x)− PN (x)|2

for any trigonometric polynomial PN of order N (2nd order mean), and

lim
N→+∞

∫ 2π

0
|f (x)− fN (x)|2dx = 0.

Bessel–Parseval Identity

In the same previous hypotheses:
1

π

∫ 2π

0
|f (x)|2dx =

a0

2
+
∞∑
n=1

(
|ak |

2 + |bk |
2
)

= 2
∑
k∈Z
|ck |

2
.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 5 / 20

An approximation for the Fourier Series DFT: Discrete Fourier Trasform

DFT: Discrete Fourier Trasform

Standard Problem

Let f (x) : [a, b)→ C a periodic function. We suppose that f (x) can be written as:

f (x) =
+∞∑

k=−∞

cke
i2πk(x−a

b−a)
, subject to previous convergence results.

For MATLAB: φk(x) =
e i2π(k−1−N/2)(x−a)/(b−a)

√
b − a

, ∀k ∈ Z, orthonormal respect to

〈φj , φk〉 =
∫ b

a
φj (x)φk (x)dx;

〈φj , φk〉N =
b − a

N

N∑
n=1

φj (xn)φk (xn) with −N + 1 ≤ j − k ≤ N − 1.

How to approximate ck and f (xk), with k = 1, . . . ,N

ck =

∫ b

a
f (x)φk(x)dx ≈

√
b − a
N

N∑
n=1

(
f (xn)e iNπyn

)
e−i2π(k−1)yn = f̂k , (DFT).

f (xk) ≈
ˆ̂fk =

N∑
n=1

f̂nφn(xk) =
N

√
b − a

1
N

(N∑
n=1

f̂ne i2π(n−1)yk
)
e−iNπyk (IDFT).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 6 / 20

An approximation for the Fourier Series DFT: Discrete Fourier Trasform

DFT: Discrete Fourier Trasform

Standard Problem

Let f (x) : [a, b)→ C a periodic function. We suppose that f (x) can be written as:

f (x) =
+∞∑

k=−∞

cke
i2πk(x−a

b−a)
, subject to previous convergence results.

For MATLAB: φk(x) =
e i2π(k−1−N/2)(x−a)/(b−a)

√
b − a

, ∀k ∈ Z, orthonormal respect to

〈φj , φk〉 =
∫ b

a
φj (x)φk (x)dx;

〈φj , φk〉N =
b − a

N

N∑
n=1

φj (xn)φk (xn)

with −N + 1 ≤ j − k ≤ N − 1.

How to approximate ck and f (xk), with k = 1, . . . ,N

ck =

∫ b

a
f (x)φk(x)dx ≈

√
b − a
N

N∑
n=1

(
f (xn)e iNπyn

)
e−i2π(k−1)yn = f̂k , (DFT).

f (xk) ≈
ˆ̂fk =

N∑
n=1

f̂nφn(xk) =
N

√
b − a

1
N

(N∑
n=1

f̂ne i2π(n−1)yk
)
e−iNπyk (IDFT).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 6 / 20

An approximation for the Fourier Series DFT: Discrete Fourier Trasform

DFT: Discrete Fourier Trasform

Standard Problem

Let f (x) : [a, b)→ C a periodic function. We suppose that f (x) can be written as:

f (x) =
+∞∑

k=−∞

cke
i2πk(x−a

b−a)
, subject to previous convergence results.

For MATLAB: φk(x) =
e i2π(k−1−N/2)(x−a)/(b−a)

√
b − a

, ∀k ∈ Z, orthonormal respect to

〈φj , φk〉 =
∫ b

a
φj (x)φk (x)dx;

〈φj , φk〉N =
b − a

N

N∑
n=1

φj (xn)φk (xn) with −N + 1 ≤ j − k ≤ N − 1.

How to approximate ck and f (xk), with k = 1, . . . ,N

ck =

∫ b

a
f (x)φk(x)dx ≈

√
b − a
N

N∑
n=1

(
f (xn)e iNπyn

)
e−i2π(k−1)yn = f̂k , (DFT).

f (xk) ≈
ˆ̂fk =

N∑
n=1

f̂nφn(xk) =
N

√
b − a

1
N

(N∑
n=1

f̂ne i2π(n−1)yk
)
e−iNπyk (IDFT).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 6 / 20

An approximation for the Fourier Series DFT: Discrete Fourier Trasform

DFT: Discrete Fourier Trasform

Standard Problem

Let f (x) : [a, b)→ C a periodic function. We suppose that f (x) can be written as:

f (x) =
+∞∑

k=−∞

cke
i2πk(x−a

b−a)
, subject to previous convergence results.

For MATLAB: φk(x) =
e i2π(k−1−N/2)(x−a)/(b−a)

√
b − a

, ∀k ∈ Z, orthonormal respect to

〈φj , φk〉 =
∫ b

a
φj (x)φk (x)dx;

〈φj , φk〉N =
b − a

N

N∑
n=1

φj (xn)φk (xn) with −N + 1 ≤ j − k ≤ N − 1.

How to approximate ck and f (xk), with k = 1, . . . ,N

ck =

∫ b

a
f (x)φk(x)dx

≈
√

b − a
N

N∑
n=1

(
f (xn)e iNπyn

)
e−i2π(k−1)yn = f̂k , (DFT).

f (xk) ≈
ˆ̂fk =

N∑
n=1

f̂nφn(xk) =
N

√
b − a

1
N

(N∑
n=1

f̂ne i2π(n−1)yk
)
e−iNπyk (IDFT).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 6 / 20

An approximation for the Fourier Series DFT: Discrete Fourier Trasform

DFT: Discrete Fourier Trasform

Standard Problem

Let f (x) : [a, b)→ C a periodic function. We suppose that f (x) can be written as:

f (x) =
+∞∑

k=−∞

cke
i2πk(x−a

b−a)
, subject to previous convergence results.

For MATLAB: φk(x) =
e i2π(k−1−N/2)(x−a)/(b−a)

√
b − a

, ∀k ∈ Z, orthonormal respect to

〈φj , φk〉 =
∫ b

a
φj (x)φk (x)dx;

〈φj , φk〉N =
b − a

N

N∑
n=1

φj (xn)φk (xn) with −N + 1 ≤ j − k ≤ N − 1.

How to approximate ck and f (xk), with k = 1, . . . ,N

ck =

∫ b

a
f (x)φk(x)dx ≈

√
b − a
N

N∑
n=1

(
f (xn)e iNπyn

)
e−i2π(k−1)yn = f̂k , (DFT).

f (xk) ≈
ˆ̂fk =

N∑
n=1

f̂nφn(xk) =
N

√
b − a

1
N

(N∑
n=1

f̂ne i2π(n−1)yk
)
e−iNπyk (IDFT).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 6 / 20

An approximation for the Fourier Series DFT: Discrete Fourier Trasform

DFT: Discrete Fourier Trasform

Standard Problem

Let f (x) : [a, b)→ C a periodic function. We suppose that f (x) can be written as:

f (x) =
+∞∑

k=−∞

cke
i2πk(x−a

b−a)
, subject to previous convergence results.

For MATLAB: φk(x) =
e i2π(k−1−N/2)(x−a)/(b−a)

√
b − a

, ∀k ∈ Z, orthonormal respect to

〈φj , φk〉 =
∫ b

a
φj (x)φk (x)dx;

〈φj , φk〉N =
b − a

N

N∑
n=1

φj (xn)φk (xn) with −N + 1 ≤ j − k ≤ N − 1.

How to approximate ck and f (xk), with k = 1, . . . ,N

ck =

∫ b

a
f (x)φk(x)dx ≈

√
b − a
N

N∑
n=1

(
f (xn)e iNπyn

)
e−i2π(k−1)yn = f̂k , (DFT).

f (xk) ≈
ˆ̂fk =

N∑
n=1

f̂nφn(xk) =
N

√
b − a

1
N

(N∑
n=1

f̂ne i2π(n−1)yk
)
e−iNπyk (IDFT).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 6 / 20

An approximation for the Fourier Series Error estimate

Error estimate

Truncation error∫ b

a

∣∣∣∣∣f (x)−
N∑

j=1

cjφj (x)

∣∣∣∣∣
2

dx =
∑
k∈J

|ck |2 with J = Z\{1, . . . ,N}.

Estimate for ck (integrating by parts) - Spectral convergence

f (x) ∈ C1 ⇒ ck = O(k−1) f (x) ∈ C2 ⇒ ck = O(k−2)
f (x) ∈ C∞ decays faster

than any negative power of k

Upper-bound (Boyd)

|f (x)− fN(x)| ≤
∑
k∈J

|ck |, where fN =
N∑

k=1

ckφk(x);

|f (x)− FN(x)| ≤ 2
∑
k∈J

|ck |, where FN =
N∑

k=1

f̂kφk(x).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 7 / 20

An approximation for the Fourier Series Error estimate

Error estimate

Truncation error∫ b

a

∣∣∣∣∣f (x)−
N∑

j=1

cjφj (x)

∣∣∣∣∣
2

dx =
∑
k∈J

|ck |2 with J = Z\{1, . . . ,N}.

Estimate for ck (integrating by parts) - Spectral convergence

f (x) ∈ C1 ⇒ ck = O(k−1) f (x) ∈ C2 ⇒ ck = O(k−2)
f (x) ∈ C∞ decays faster

than any negative power of k

Upper-bound (Boyd)

|f (x)− fN(x)| ≤
∑
k∈J

|ck |, where fN =
N∑

k=1

ckφk(x);

|f (x)− FN(x)| ≤ 2
∑
k∈J

|ck |, where FN =
N∑

k=1

f̂kφk(x).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 7 / 20

An approximation for the Fourier Series Error estimate

Error estimate

Truncation error∫ b

a

∣∣∣∣∣f (x)−
N∑

j=1

cjφj (x)

∣∣∣∣∣
2

dx =
∑
k∈J

|ck |2 with J = Z\{1, . . . ,N}.

Estimate for ck (integrating by parts) - Spectral convergence

f (x) ∈ C1 ⇒ ck = O(k−1) f (x) ∈ C2 ⇒ ck = O(k−2)
f (x) ∈ C∞ decays faster

than any negative power of k

Upper-bound (Boyd)

|f (x)− fN(x)| ≤
∑
k∈J

|ck |, where fN =
N∑

k=1

ckφk(x);

|f (x)− FN(x)| ≤ 2
∑
k∈J

|ck |, where FN =
N∑

k=1

f̂kφk(x).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 7 / 20

An approximation for the Fourier Series Error estimate

Trapezoidal quadrature formula∫ b

a
g(x)dx ≈ b − a

2N

(
g(x1) + 2

N∑
k=2

g(xk) + g(xN+1)
)
=

b − a
N

N∑
k=1

g(xk).

DFT is exact on N points for {φk}N−1
k=−N+1

φk(x) is orthonormal respect to < ·, · >N ;
FN(xk) is interpolant.

Proof of the interpolant property

FN (xk) =
N∑

n=1
f̂nφn(xk) =

=
N∑

n=1

((√b − a

N

N∑
m=1

f (xm)eiNπym
)
e−i2π(n−1)ym

)
ei2π(n−1−N/2)(xk−a)/(b−a)

√
b − a

=

=
1

N

N∑
m=1

f (xm)eiNπ(m−1)/Ne−iNπ(k−1)/N
N∑

n=1
e−i2π(n−1)(m−1)/Nei2π(n−1)(k−1)/N =

=
1

N

N∑
m=1

f (xm)ei (m−k)π
N∑

n=1
ei2π(n−1)(k−m)/N =

1

N
f (xk)N = f (xk).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 8 / 20

An approximation for the Fourier Series Error estimate

Trapezoidal quadrature formula∫ b

a
g(x)dx ≈ b − a

2N

(
g(x1) + 2

N∑
k=2

g(xk) + g(xN+1)
)
=

b − a
N

N∑
k=1

g(xk).

DFT is exact on N points for {φk}N−1
k=−N+1

φk(x) is orthonormal respect to < ·, · >N ;
FN(xk) is interpolant.

Proof of the interpolant property

FN (xk) =
N∑

n=1
f̂nφn(xk) =

=
N∑

n=1

((√b − a

N

N∑
m=1

f (xm)eiNπym
)
e−i2π(n−1)ym

)
ei2π(n−1−N/2)(xk−a)/(b−a)

√
b − a

=

=
1

N

N∑
m=1

f (xm)eiNπ(m−1)/Ne−iNπ(k−1)/N
N∑

n=1
e−i2π(n−1)(m−1)/Nei2π(n−1)(k−1)/N =

=
1

N

N∑
m=1

f (xm)ei (m−k)π
N∑

n=1
ei2π(n−1)(k−m)/N =

1

N
f (xk)N = f (xk).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 8 / 20

An approximation for the Fourier Series Error estimate

Trapezoidal quadrature formula∫ b

a
g(x)dx ≈ b − a

2N

(
g(x1) + 2

N∑
k=2

g(xk) + g(xN+1)
)
=

b − a
N

N∑
k=1

g(xk).

DFT is exact on N points for {φk}N−1
k=−N+1

φk(x) is orthonormal respect to < ·, · >N ;
FN(xk) is interpolant.

Proof of the interpolant property

FN (xk) =
N∑

n=1
f̂nφn(xk) =

=
N∑

n=1

((√b − a

N

N∑
m=1

f (xm)eiNπym
)
e−i2π(n−1)ym

)
ei2π(n−1−N/2)(xk−a)/(b−a)

√
b − a

=

=
1

N

N∑
m=1

f (xm)eiNπ(m−1)/Ne−iNπ(k−1)/N
N∑

n=1
e−i2π(n−1)(m−1)/Nei2π(n−1)(k−1)/N =

=
1

N

N∑
m=1

f (xm)ei (m−k)π
N∑

n=1
ei2π(n−1)(k−m)/N =

1

N
f (xk)N = f (xk).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 8 / 20

Equispaced MFT and FFT Equispaced Matrix Fourier Transform

Equispaced Matrix Fourier Transform

Given N equispaced sampling nodes and M equispaced evaluation points, how to
implement DFT and IDFT in Matlab? MFT or FFT.

1. Matrix Fourier Transform (MFT) and Inverse (IMFT) with M = N

Let (F)jk = e−i2π(j−1)yk and yk = (n − 1)/N, n = 1, . . . ,N + 1:
√

b − a
N

· F [f (x1)e iNπy1 , . . . , f (xN)e iNπyN]T is the MFT;

N√
b − a

(FH [f̂1, . . . , f̂N]
N

)
◦ [e−iπNy1 , . . . , e−iπNyN] is the IMFT.

1. Matrix Fourier Transform (MFT) and Inverse (IMFT) with M 6= N

M > N: ˆ̂fk =
N∑

n=1

f̂nφn(xk), with k = 1, . . . ,M;

M < N: there is no difference with the case discussed above.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 9 / 20

Equispaced MFT and FFT Equispaced Matrix Fourier Transform

Equispaced Matrix Fourier Transform

Given N equispaced sampling nodes and M equispaced evaluation points, how to
implement DFT and IDFT in Matlab? MFT or FFT.

1. Matrix Fourier Transform (MFT) and Inverse (IMFT) with M = N

Let (F)jk = e−i2π(j−1)yk and yk = (n − 1)/N, n = 1, . . . ,N + 1:
√

b − a
N

· F [f (x1)e iNπy1 , . . . , f (xN)e iNπyN]T is the MFT;

N√
b − a

(FH [f̂1, . . . , f̂N]
N

)
◦ [e−iπNy1 , . . . , e−iπNyN] is the IMFT.

1. Matrix Fourier Transform (MFT) and Inverse (IMFT) with M 6= N

M > N: ˆ̂fk =
N∑

n=1

f̂nφn(xk), with k = 1, . . . ,M;

M < N: there is no difference with the case discussed above.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 9 / 20

Equispaced MFT and FFT Equispaced Matrix Fourier Transform

Equispaced Matrix Fourier Transform

Given N equispaced sampling nodes and M equispaced evaluation points, how to
implement DFT and IDFT in Matlab? MFT or FFT.

1. Matrix Fourier Transform (MFT) and Inverse (IMFT) with M = N

Let (F)jk = e−i2π(j−1)yk and yk = (n − 1)/N, n = 1, . . . ,N + 1:
√

b − a
N

· F [f (x1)e iNπy1 , . . . , f (xN)e iNπyN]T is the MFT;

N√
b − a

(FH [f̂1, . . . , f̂N]
N

)
◦ [e−iπNy1 , . . . , e−iπNyN] is the IMFT.

1. Matrix Fourier Transform (MFT) and Inverse (IMFT) with M 6= N

M > N: ˆ̂fk =
N∑

n=1

f̂nφn(xk), with k = 1, . . . ,M;

M < N: there is no difference with the case discussed above.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 9 / 20

Equispaced MFT and FFT Equispaced Fast Fourier Transform

Equispaced Fast Fourier Transform

(1965) FFT: Cooley (IBM), Tuckey (Princeton)

Some key concepts:

N = N1 + N2, (N1 = N2 with N power of 2);

f̂k =

N/2−1∑
m=0

f (x2m)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ek: DFT of even−indexed part of ym

+e−i2π 1
N k

N/2−1∑
m=0

f (x2m+1)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ok: DFT of odd−indexed part of ym

they are two DFTs of length N/2, so for the periodicity properties of DFT we have

Ek+N/2 = Ek ,

Ok+N/2 = Ok ;

twiddle factor: e−2πi (k+N/2)
N = e−πie−2πi k

N = −e−2πi k
N ;

f̂k =


Ek + e−

2πi
N kOk if k < N/2

Ek−N/2 − e−
2πi
N (k−N/2)Ok−N/2 if k ≥ N/2.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 10 / 20

Equispaced MFT and FFT Equispaced Fast Fourier Transform

Equispaced Fast Fourier Transform

(1965) FFT: Cooley (IBM), Tuckey (Princeton)

Some key concepts:

N = N1 + N2, (N1 = N2 with N power of 2);

f̂k =

N/2−1∑
m=0

f (x2m)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ek: DFT of even−indexed part of ym

+e−i2π 1
N k

N/2−1∑
m=0

f (x2m+1)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ok: DFT of odd−indexed part of ym

they are two DFTs of length N/2, so for the periodicity properties of DFT we have

Ek+N/2 = Ek ,

Ok+N/2 = Ok ;

twiddle factor: e−2πi (k+N/2)
N = e−πie−2πi k

N = −e−2πi k
N ;

f̂k =


Ek + e−

2πi
N kOk if k < N/2

Ek−N/2 − e−
2πi
N (k−N/2)Ok−N/2 if k ≥ N/2.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 10 / 20

Equispaced MFT and FFT Equispaced Fast Fourier Transform

Equispaced Fast Fourier Transform

(1965) FFT: Cooley (IBM), Tuckey (Princeton)

Some key concepts:

N = N1 + N2, (N1 = N2 with N power of 2);

f̂k =

N/2−1∑
m=0

f (x2m)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ek: DFT of even−indexed part of ym

+e−i2π 1
N k

N/2−1∑
m=0

f (x2m+1)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ok: DFT of odd−indexed part of ym

they are two DFTs of length N/2, so for the periodicity properties of DFT we have

Ek+N/2 = Ek ,

Ok+N/2 = Ok ;

twiddle factor: e−2πi (k+N/2)
N = e−πie−2πi k

N = −e−2πi k
N ;

f̂k =


Ek + e−

2πi
N kOk if k < N/2

Ek−N/2 − e−
2πi
N (k−N/2)Ok−N/2 if k ≥ N/2.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 10 / 20

Equispaced MFT and FFT Equispaced Fast Fourier Transform

Equispaced Fast Fourier Transform

(1965) FFT: Cooley (IBM), Tuckey (Princeton)

Some key concepts:

N = N1 + N2, (N1 = N2 with N power of 2);

f̂k =

N/2−1∑
m=0

f (x2m)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ek: DFT of even−indexed part of ym

+e−i2π 1
N k

N/2−1∑
m=0

f (x2m+1)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ok: DFT of odd−indexed part of ym

they are two DFTs of length N/2, so for the periodicity properties of DFT we have

Ek+N/2 = Ek ,

Ok+N/2 = Ok ;

twiddle factor: e−2πi (k+N/2)
N = e−πie−2πi k

N = −e−2πi k
N ;

f̂k =


Ek + e−

2πi
N kOk if k < N/2

Ek−N/2 − e−
2πi
N (k−N/2)Ok−N/2 if k ≥ N/2.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 10 / 20

Equispaced MFT and FFT Equispaced Fast Fourier Transform

Equispaced Fast Fourier Transform

(1965) FFT: Cooley (IBM), Tuckey (Princeton)

Some key concepts:

N = N1 + N2, (N1 = N2 with N power of 2);

f̂k =

N/2−1∑
m=0

f (x2m)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ek: DFT of even−indexed part of ym

+e−i2π 1
N k

N/2−1∑
m=0

f (x2m+1)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ok: DFT of odd−indexed part of ym

they are two DFTs of length N/2, so for the periodicity properties of DFT we have

Ek+N/2 = Ek ,

Ok+N/2 = Ok ;

twiddle factor: e−2πi (k+N/2)
N = e−πie−2πi k

N = −e−2πi k
N ;

f̂k =


Ek + e−

2πi
N kOk if k < N/2

Ek−N/2 − e−
2πi
N (k−N/2)Ok−N/2 if k ≥ N/2.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 10 / 20

Equispaced MFT and FFT Equispaced Fast Fourier Transform

Fastest Fourier Transform in the West: a FFT library for MATLAB
written in C (Frigo - Johnson);

fft, ifft, fftshift, ifftshift;

distributed "wisdom" (size, type of transformation, etc...).

2. Fast Fourier Transform (FFT) and Inverse (IFFT) with M = N
√

b − a
N

· fftshift
(
fft
(
[f (x1), . . . , f (xn)]

T
))

is the FFT;

N√
b − a

· ifft
(
fftshift

(
[f̂1, . . . , f̂N]

))
is the IFFT.

2. Fast Fourier Transform (FFT) and Inverse (IFFT) with M 6= N

M > N: f̂ ∗ = [0, . . . , 0,︸ ︷︷ ︸
(M−N)/2 items

f̂ , 0, . . . , 0︸ ︷︷ ︸
(M−N)/2 items

];

M < N: f̂ ∗ = [f̂1, . . . , f̂M−N
2
,︸ ︷︷ ︸

items to be deleted

f̂M−N
2 +1, . . . , f̂M+N

2
, f̂M+N

2 +1, . . . , f̂N︸ ︷︷ ︸
items to be deleted

]. (!)

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 11 / 20

Equispaced MFT and FFT Equispaced Fast Fourier Transform

Fastest Fourier Transform in the West: a FFT library for MATLAB
written in C (Frigo - Johnson);

fft, ifft, fftshift, ifftshift;

distributed "wisdom" (size, type of transformation, etc...).

2. Fast Fourier Transform (FFT) and Inverse (IFFT) with M = N
√

b − a
N

· fftshift
(
fft
(
[f (x1), . . . , f (xn)]

T
))

is the FFT;

N√
b − a

· ifft
(
fftshift

(
[f̂1, . . . , f̂N]

))
is the IFFT.

2. Fast Fourier Transform (FFT) and Inverse (IFFT) with M 6= N

M > N: f̂ ∗ = [0, . . . , 0,︸ ︷︷ ︸
(M−N)/2 items

f̂ , 0, . . . , 0︸ ︷︷ ︸
(M−N)/2 items

];

M < N: f̂ ∗ = [f̂1, . . . , f̂M−N
2
,︸ ︷︷ ︸

items to be deleted

f̂M−N
2 +1, . . . , f̂M+N

2
, f̂M+N

2 +1, . . . , f̂N︸ ︷︷ ︸
items to be deleted

]. (!)

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 11 / 20

Equispaced MFT and FFT Equispaced Fast Fourier Transform

Fastest Fourier Transform in the West: a FFT library for MATLAB
written in C (Frigo - Johnson);

fft, ifft, fftshift, ifftshift;

distributed "wisdom" (size, type of transformation, etc...).

2. Fast Fourier Transform (FFT) and Inverse (IFFT) with M = N
√

b − a
N

· fftshift
(
fft
(
[f (x1), . . . , f (xn)]

T
))

is the FFT;

N√
b − a

· ifft
(
fftshift

(
[f̂1, . . . , f̂N]

))
is the IFFT.

2. Fast Fourier Transform (FFT) and Inverse (IFFT) with M 6= N

M > N: f̂ ∗ = [0, . . . , 0,︸ ︷︷ ︸
(M−N)/2 items

f̂ , 0, . . . , 0︸ ︷︷ ︸
(M−N)/2 items

];

M < N: f̂ ∗ = [f̂1, . . . , f̂M−N
2
,︸ ︷︷ ︸

items to be deleted

f̂M−N
2 +1, . . . , f̂M+N

2
, f̂M+N

2 +1, . . . , f̂N︸ ︷︷ ︸
items to be deleted

]. (!)

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 11 / 20

Equispaced MFT and FFT Computational cost and comparison between MFT and FFT

Computational cost and comparison between MFT and FFT

Computational cost (M = N equispaced nodes)

From space domain to frequency domain or backward the computational cost is

MFT: O(N2); FFT: O(N log2 N).

Comparison MFT–FFT, test f(x) = sin(2*pi*(x-a)/(b-a)) + 2*cos(4*2*pi*(x-a)/(b-a))

8 16 32 64 128 256 512 1024 2048 4096

10
−20

10
−15

10
−10

10
−5

10
0

Number of Fourier coefficents

C
P

U
 T

im
e

CPU Time MFT

CPU Time FFT

Error MFT

Error FFT

10
−20

10
−15

10
−10

10
−5

10
0

E
rr

o
r

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 12 / 20

Equispaced MFT and FFT Computational cost and comparison between MFT and FFT

Computational cost and comparison between MFT and FFT

Computational cost (M = N equispaced nodes)

From space domain to frequency domain or backward the computational cost is

MFT: O(N2); FFT: O(N log2 N).

Comparison MFT–FFT, test f(x) = sin(2*pi*(x-a)/(b-a)) + 2*cos(4*2*pi*(x-a)/(b-a))

8 16 32 64 128 256 512 1024 2048 4096

10
−20

10
−15

10
−10

10
−5

10
0

Number of Fourier coefficents

C
P

U
 T

im
e

CPU Time MFT

CPU Time FFT

Error MFT

Error FFT

10
−20

10
−15

10
−10

10
−5

10
0

E
rr

o
r

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 12 / 20

Equispaced MFT and FFT Computational cost and comparison between MFT and FFT

Computational cost and comparison between MFT and FFT

Computational cost (M = N equispaced nodes)

From space domain to frequency domain or backward the computational cost is

MFT: O(N2); FFT: O(N log2 N).

Comparison MFT–FFT, test f(x) = sin(2*pi*(x-a)/(b-a)) + 2*cos(4*2*pi*(x-a)/(b-a))

8 16 32 64 128 256 512 1024 2048 4096

10
−20

10
−15

10
−10

10
−5

10
0

Number of Fourier coefficents

C
P

U
 T

im
e

CPU Time MFT

CPU Time FFT

Error MFT

Error FFT

10
−20

10
−15

10
−10

10
−5

10
0

E
rr

o
r

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 12 / 20

Nonequispaced DFT and FFT Nonequispaced DFT

Nonequispaced DFT

What if we have M nonequispaced evaluation nodes?

NDFT or NFFT!

Nonequispaced Discrete Fourier Transform (NDFT) and Inverse (INDFT) by Kunis

f̂ (x) =
N/2−1∑

k=−N/2

f (x)e i2πkx (NDFT);

ˆ̂fk =

N/2−1∑
k=−N/2

f̂ke−i2πky (INDFT).

with x , y ∈ [− 1
2 ,

1
2). This works for M = N and M 6= N.

Differences between Kunis notations and the ours: how to fix?

In Kunis: x ∈ [− 1
2 ,

1
2) but we consider y ∈ [0, 1).

DFT, NDFT (and Inverses) presents a “minus” factor in the exponential.

How to fix this issue?
x ∈ [a, b)→ y = −

(
(x − a)/(b − a)− 0.5

)
; y ∈ [− 1

2 ,
1
2]→ x = −(b − a)(y − 0.5) + a.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 13 / 20

Nonequispaced DFT and FFT Nonequispaced DFT

Nonequispaced DFT

What if we have M nonequispaced evaluation nodes? NDFT or NFFT!

Nonequispaced Discrete Fourier Transform (NDFT) and Inverse (INDFT) by Kunis

f̂ (x) =
N/2−1∑

k=−N/2

f (x)e i2πkx (NDFT);

ˆ̂fk =

N/2−1∑
k=−N/2

f̂ke−i2πky (INDFT).

with x , y ∈ [− 1
2 ,

1
2). This works for M = N and M 6= N.

Differences between Kunis notations and the ours: how to fix?

In Kunis: x ∈ [− 1
2 ,

1
2) but we consider y ∈ [0, 1).

DFT, NDFT (and Inverses) presents a “minus” factor in the exponential.

How to fix this issue?
x ∈ [a, b)→ y = −

(
(x − a)/(b − a)− 0.5

)
; y ∈ [− 1

2 ,
1
2]→ x = −(b − a)(y − 0.5) + a.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 13 / 20

Nonequispaced DFT and FFT Nonequispaced DFT

Nonequispaced DFT

What if we have M nonequispaced evaluation nodes? NDFT or NFFT!

Nonequispaced Discrete Fourier Transform (NDFT) and Inverse (INDFT) by Kunis

f̂ (x) =
N/2−1∑

k=−N/2

f (x)e i2πkx (NDFT);

ˆ̂fk =

N/2−1∑
k=−N/2

f̂ke−i2πky (INDFT).

with x , y ∈ [− 1
2 ,

1
2). This works for M = N and M 6= N.

Differences between Kunis notations and the ours: how to fix?

In Kunis: x ∈ [− 1
2 ,

1
2) but we consider y ∈ [0, 1).

DFT, NDFT (and Inverses) presents a “minus” factor in the exponential.

How to fix this issue?
x ∈ [a, b)→ y = −

(
(x − a)/(b − a)− 0.5

)
; y ∈ [− 1

2 ,
1
2]→ x = −(b − a)(y − 0.5) + a.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 13 / 20

Nonequispaced DFT and FFT Nonequispaced DFT

Nonequispaced DFT

What if we have M nonequispaced evaluation nodes? NDFT or NFFT!

Nonequispaced Discrete Fourier Transform (NDFT) and Inverse (INDFT) by Kunis

f̂ (x) =
N/2−1∑

k=−N/2

f (x)e i2πkx (NDFT);

ˆ̂fk =

N/2−1∑
k=−N/2

f̂ke−i2πky (INDFT).

with x , y ∈ [− 1
2 ,

1
2). This works for M = N and M 6= N.

Differences between Kunis notations and the ours: how to fix?

In Kunis: x ∈ [− 1
2 ,

1
2) but we consider y ∈ [0, 1).

DFT, NDFT (and Inverses) presents a “minus” factor in the exponential.

How to fix this issue?
x ∈ [a, b)→ y = −

(
(x − a)/(b − a)− 0.5

)
; y ∈ [− 1

2 ,
1
2]→ x = −(b − a)(y − 0.5) + a.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 13 / 20

Nonequispaced DFT and FFT Nonequispaced DFT

Nonequispaced DFT

What if we have M nonequispaced evaluation nodes? NDFT or NFFT!

Nonequispaced Discrete Fourier Transform (NDFT) and Inverse (INDFT) by Kunis

f̂ (x) =
N/2−1∑

k=−N/2

f (x)e i2πkx (NDFT);

ˆ̂fk =

N/2−1∑
k=−N/2

f̂ke−i2πky (INDFT).

with x , y ∈ [− 1
2 ,

1
2). This works for M = N and M 6= N.

Differences between Kunis notations and the ours: how to fix?

In Kunis: x ∈ [− 1
2 ,

1
2) but we consider y ∈ [0, 1).

DFT, NDFT (and Inverses) presents a “minus” factor in the exponential.

How to fix this issue?
x ∈ [a, b)→ y = −

(
(x − a)/(b − a)− 0.5

)
; y ∈ [− 1

2 ,
1
2]→ x = −(b − a)(y − 0.5) + a.

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 13 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

Nonequispaced FFT: alghoritm and error estimation
We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

nodes xj = [− 1
2 ,

1
2) with j = 0 . . . ,N;

frequencies IN = [−N
2 ,

N
2);

an oversampling factor σ > 1, setting n = σN.

IDEA: f (x) =
∑

k∈IN

f̂ke−2πikx ≈ s1(x) =
∑
l∈In

gl ϕ̃
(
x −

l

n

)
, with ϕ̃(x) =

∑
r∈Z

ϕ(x + r), with f̂k given.

1. Cut-off in frequency domain

s1(x) =
∑
k∈Z

ĝk ϕ̂ke−2πikx =
∑

k∈In

ĝk ϕ̂ke−2πikx +
∑

r∈Zr{0}

∑
k∈In

ĝk ϕ̂k+nr e
−2πi (k+nr)x ,

ĝk =
∑
l∈In

gl e
2πik l

n

ĝk =

{
f̂k/ϕ̂k if k ∈ IN
0 if k ∈ In r IN

FFT: gl =
1

n

∑
k∈IN

ĝke−2πik l
n with l ∈ In,

ϕ̂k =

∫ 1/2

−1/2
ϕ̃(x)e2πikxdx, k ∈ Z.

if ϕ̂k are small enough for k ∈ Z r In
and ϕ̂k 6= 0 for k ∈ IN .

aliasing error

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 14 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

Nonequispaced FFT: alghoritm and error estimation
We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

nodes xj = [− 1
2 ,

1
2) with j = 0 . . . ,N;

frequencies IN = [−N
2 ,

N
2);

an oversampling factor σ > 1, setting n = σN.

IDEA: f (x) =
∑

k∈IN

f̂ke−2πikx ≈ s1(x) =
∑
l∈In

gl ϕ̃
(
x −

l

n

)
, with ϕ̃(x) =

∑
r∈Z

ϕ(x + r), with f̂k given.

1. Cut-off in frequency domain

s1(x) =
∑
k∈Z

ĝk ϕ̂ke−2πikx =
∑

k∈In

ĝk ϕ̂ke−2πikx +
∑

r∈Zr{0}

∑
k∈In

ĝk ϕ̂k+nr e
−2πi (k+nr)x ,

ĝk =
∑
l∈In

gl e
2πik l

n

ĝk =

{
f̂k/ϕ̂k if k ∈ IN
0 if k ∈ In r IN

FFT: gl =
1

n

∑
k∈IN

ĝke−2πik l
n with l ∈ In,

ϕ̂k =

∫ 1/2

−1/2
ϕ̃(x)e2πikxdx, k ∈ Z.

if ϕ̂k are small enough for k ∈ Z r In
and ϕ̂k 6= 0 for k ∈ IN .

aliasing error

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 14 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

Nonequispaced FFT: alghoritm and error estimation
We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

nodes xj = [− 1
2 ,

1
2) with j = 0 . . . ,N;

frequencies IN = [−N
2 ,

N
2);

an oversampling factor σ > 1, setting n = σN.

IDEA: f (x) =
∑

k∈IN

f̂ke−2πikx ≈ s1(x) =
∑
l∈In

gl ϕ̃
(
x −

l

n

)
, with ϕ̃(x) =

∑
r∈Z

ϕ(x + r), with f̂k given.

1. Cut-off in frequency domain

s1(x) =
∑
k∈Z

ĝk ϕ̂ke−2πikx =
∑

k∈In

ĝk ϕ̂ke−2πikx +
∑

r∈Zr{0}

∑
k∈In

ĝk ϕ̂k+nr e
−2πi (k+nr)x ,

ĝk =
∑
l∈In

gl e
2πik l

n

ĝk =

{
f̂k/ϕ̂k if k ∈ IN
0 if k ∈ In r IN

FFT: gl =
1

n

∑
k∈IN

ĝke−2πik l
n with l ∈ In,

ϕ̂k =

∫ 1/2

−1/2
ϕ̃(x)e2πikxdx, k ∈ Z.

if ϕ̂k are small enough for k ∈ Z r In
and ϕ̂k 6= 0 for k ∈ IN .

aliasing error

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 14 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

Nonequispaced FFT: alghoritm and error estimation
We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

nodes xj = [− 1
2 ,

1
2) with j = 0 . . . ,N;

frequencies IN = [−N
2 ,

N
2);

an oversampling factor σ > 1, setting n = σN.

IDEA: f (x) =
∑

k∈IN

f̂ke−2πikx ≈ s1(x) =
∑
l∈In

gl ϕ̃
(
x −

l

n

)
, with ϕ̃(x) =

∑
r∈Z

ϕ(x + r), with f̂k given.

1. Cut-off in frequency domain

s1(x) =
∑
k∈Z

ĝk ϕ̂ke−2πikx =
∑

k∈In

ĝk ϕ̂ke−2πikx +
∑

r∈Zr{0}

∑
k∈In

ĝk ϕ̂k+nr e
−2πi (k+nr)x ,

ĝk =
∑
l∈In

gl e
2πik l

n

ĝk =

{
f̂k/ϕ̂k if k ∈ IN
0 if k ∈ In r IN

FFT: gl =
1

n

∑
k∈IN

ĝke−2πik l
n with l ∈ In,

ϕ̂k =

∫ 1/2

−1/2
ϕ̃(x)e2πikxdx, k ∈ Z.

if ϕ̂k are small enough for k ∈ Z r In
and ϕ̂k 6= 0 for k ∈ IN .

aliasing error

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 14 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

Nonequispaced FFT: alghoritm and error estimation
We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

nodes xj = [− 1
2 ,

1
2) with j = 0 . . . ,N;

frequencies IN = [−N
2 ,

N
2);

an oversampling factor σ > 1, setting n = σN.

IDEA: f (x) =
∑

k∈IN

f̂ke−2πikx ≈ s1(x) =
∑
l∈In

gl ϕ̃
(
x −

l

n

)
, with ϕ̃(x) =

∑
r∈Z

ϕ(x + r), with f̂k given.

1. Cut-off in frequency domain

s1(x) =
∑
k∈Z

ĝk ϕ̂ke−2πikx =
∑

k∈In

ĝk ϕ̂ke−2πikx +
∑

r∈Zr{0}

∑
k∈In

ĝk ϕ̂k+nr e
−2πi (k+nr)x ,

ĝk =
∑
l∈In

gl e
2πik l

n

ĝk =

{
f̂k/ϕ̂k if k ∈ IN
0 if k ∈ In r IN

FFT: gl =
1

n

∑
k∈IN

ĝke−2πik l
n with l ∈ In,

ϕ̂k =

∫ 1/2

−1/2
ϕ̃(x)e2πikxdx, k ∈ Z.

if ϕ̂k are small enough for k ∈ Z r In
and ϕ̂k 6= 0 for k ∈ IN .

aliasing error

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 14 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

Nonequispaced FFT: alghoritm and error estimation
We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

nodes xj = [− 1
2 ,

1
2) with j = 0 . . . ,N;

frequencies IN = [−N
2 ,

N
2);

an oversampling factor σ > 1, setting n = σN.

IDEA: f (x) =
∑

k∈IN

f̂ke−2πikx ≈ s1(x) =
∑
l∈In

gl ϕ̃
(
x −

l

n

)
, with ϕ̃(x) =

∑
r∈Z

ϕ(x + r), with f̂k given.

1. Cut-off in frequency domain

s1(x) =
∑
k∈Z

ĝk ϕ̂ke−2πikx =
∑

k∈In

ĝk ϕ̂ke−2πikx +
∑

r∈Zr{0}

∑
k∈In

ĝk ϕ̂k+nr e
−2πi (k+nr)x ,

ĝk =
∑
l∈In

gl e
2πik l

n

ĝk =

{
f̂k/ϕ̂k if k ∈ IN
0 if k ∈ In r IN

FFT: gl =
1

n

∑
k∈IN

ĝke−2πik l
n with l ∈ In,

ϕ̂k =

∫ 1/2

−1/2
ϕ̃(x)e2πikxdx, k ∈ Z.

if ϕ̂k are small enough for k ∈ Z r In
and ϕ̂k 6= 0 for k ∈ IN .

aliasing error

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 14 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .

2 Precompute ψ(xj − l
n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .

4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n](x), m � N.

f (xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n), with l ∈ In,m(xj).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj) =
∑

l∈In,m(xj)

gl ψ̃
(
xj −

l
n

)
.

The values s(xj) approximate f (xj).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

Error estimate

E(xj) = |f (xj)− s(xj)| ≤ Ea(xj) + Et(xj) = C(σ,m)||f̂ ||1,

Default window function: Dilated Keiser-Bessel functions

ϕ(x) =
1
π


sinh(b

√
m2 − n2x2)

√
m2 − n2x2

for |x | ≤
m
n
, with b = π

(
2−

1
α

)
,

sinh(b
√

n2x2 −m2)
√

n2x2 −m2
otherwise,

ϕ̂k =
1
n


I0

(
m

√
b2 −

(2πk
n

)2)
for k = −n

(
1− 1

2σ

)
, . . . , n

(
1− 1

2σ

)
,

0 otherwise,

with C(σ,m) = 4π(
√

m + m) 4
√

1− 1
σ

e−2πm
√
1− 1

σ .

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 16 / 20

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

Error estimate

E(xj) = |f (xj)− s(xj)| ≤ Ea(xj) + Et(xj) = C(σ,m)||f̂ ||1,

Default window function: Dilated Keiser-Bessel functions

ϕ(x) =
1
π


sinh(b

√
m2 − n2x2)

√
m2 − n2x2

for |x | ≤
m
n
, with b = π

(
2−

1
α

)
,

sinh(b
√

n2x2 −m2)
√

n2x2 −m2
otherwise,

ϕ̂k =
1
n


I0

(
m

√
b2 −

(2πk
n

)2)
for k = −n

(
1− 1

2σ

)
, . . . , n

(
1− 1

2σ

)
,

0 otherwise,

with C(σ,m) = 4π(
√

m + m) 4
√

1− 1
σ

e−2πm
√
1− 1

σ .

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 16 / 20

Nonequispaced DFT and FFT Comparison between MFT, FFT and NFFT

Comparison between MFT, FFT and NFFT

Computational Cost

NDFT: O(NM); NFFT: O((σN)d log(σN) + mdM).

Comparison between MFT, FFT and NFFT: from frequency domain to space domain

8 16 32 64 128 256 512 1024 2048 4096

10
−20

10
−15

10
−10

10
−5

10
0

Number of Fourier coefficents

C
P

U
 T

im
e

CPU Time MFT

CPU Time FFT

CPU Time NFFT

Error MFT

Error FFT

Error NFFT

10
−20

10
−15

10
−10

10
−5

10
0

E
rr

o
r

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 17 / 20

Nonequispaced DFT and FFT Comparison between MFT, FFT and NFFT

Comparison between MFT, FFT and NFFT

Computational Cost

NDFT: O(NM); NFFT: O((σN)d log(σN) + mdM).

Comparison between MFT, FFT and NFFT: from frequency domain to space domain

8 16 32 64 128 256 512 1024 2048 4096

10
−20

10
−15

10
−10

10
−5

10
0

Number of Fourier coefficents

C
P

U
 T

im
e

CPU Time MFT

CPU Time FFT

CPU Time NFFT

Error MFT

Error FFT

Error NFFT

10
−20

10
−15

10
−10

10
−5

10
0

E
rr

o
r

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 17 / 20

Nonequispaced DFT and FFT Comparison between MFT, FFT and NFFT

Comparison between MFT, FFT and NFFT

Computational Cost

NDFT: O(NM); NFFT: O((σN)d log(σN) + mdM).

Comparison between MFT, FFT and NFFT: from frequency domain to space domain

8 16 32 64 128 256 512 1024 2048 4096

10
−20

10
−15

10
−10

10
−5

10
0

Number of Fourier coefficents

C
P

U
 T

im
e

CPU Time MFT

CPU Time FFT

CPU Time NFFT

Error MFT

Error FFT

Error NFFT

10
−20

10
−15

10
−10

10
−5

10
0

E
rr

o
r

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 17 / 20

NFFT in solving hyperbolic PDE A standard hyperbolic PDE

A standard hyperbolic PDE

A simple hyperbolic PDE
∂u
∂t

+ a
∂u
∂x

= 0 x ∈ R, a 6= 0, t > 0;

u(x , 0) = u0(x) x ∈ R.

Solution: u(x , t) = u0(x − at), a wave travelling at at the speed a.

Characteristics curves x(t) on the plane (x , t)

x(t) solution of ODE


dx
dt

= a t > 0

x(0) = x0, x0 ∈ R.

The solution u(x , t) is constant along them because

d
dt

u(x , t) =
dt
dt
∂u
∂t

(x , t) +
dx
dt

∂u
∂x

(x , t) =
∂u
∂t

(x , t) + a
∂u
∂x

(x , t) = 0.

Given a source f (x, t) instead of 0 and a = a(x, t), the result is the same (changing the colored text).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 18 / 20

NFFT in solving hyperbolic PDE A standard hyperbolic PDE

A standard hyperbolic PDE

A simple hyperbolic PDE
∂u
∂t

+ a
∂u
∂x

= 0 x ∈ R, a 6= 0, t > 0;

u(x , 0) = u0(x) x ∈ R.

Solution: u(x , t) = u0(x − at), a wave travelling at at the speed a.

Characteristics curves x(t) on the plane (x , t)

x(t) solution of ODE


dx
dt

= a t > 0

x(0) = x0, x0 ∈ R.

The solution u(x , t) is constant along them because

d
dt

u(x , t) =
dt
dt
∂u
∂t

(x , t) +
dx
dt

∂u
∂x

(x , t) =
∂u
∂t

(x , t) + a
∂u
∂x

(x , t) = 0.

Given a source f (x, t) instead of 0 and a = a(x, t), the result is the same (changing the colored text).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 18 / 20

NFFT in solving hyperbolic PDE A standard hyperbolic PDE

A standard hyperbolic PDE

A simple hyperbolic PDE
∂u
∂t

+ a
∂u
∂x

= 0 x ∈ R, a 6= 0, t > 0;

u(x , 0) = u0(x) x ∈ R.

Solution: u(x , t) = u0(x − at), a wave travelling at at the speed a.

Characteristics curves x(t) on the plane (x , t)

x(t) solution of ODE


dx
dt

= a t > 0

x(0) = x0, x0 ∈ R.

The solution u(x , t) is constant along them because

d
dt

u(x , t) =
dt
dt
∂u
∂t

(x , t) +
dx
dt

∂u
∂x

(x , t) =
∂u
∂t

(x , t) + a
∂u
∂x

(x , t) = 0.

Given a source f (x, t) instead of 0 and a = a(x, t), the result is the same (changing the colored text).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 18 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic:

setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn).

We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm

1 Are given:
a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf];
starting values u0(xs);
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf)).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 19 / 20

NFFT in solving hyperbolic PDE Example

Example

An hyperbolic PDE with periodic transport coefficient
∂u

∂t
− sin(x)

∂u

∂x
= 0 x ∈ [0, 2π), t ∈ (0, 1.571]

u(x, 0) = sin(x), x ∈ [0, 2π) eq.,
with


dx

dt
= sin(x) t ∈ (0, 1.571]

x(0) = x, x ∈ [0, 2π) eq.

Solution: u(x, t) = sin
(
2 tan−1

(
et tan x

2

))
.

0 2 4 6

−1

−0.5

0

0.5

1

Space

V
a
lu

e

0 2 4 6

−1

−0.5

0

0.5

1

Space

V
a
lu

e

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

Space

V
a
lu

e

Exact Solution
u(t

n+1
,X

e
) with INFFT

Equispaced Nodes

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 20 / 20

NFFT in solving hyperbolic PDE Example

Example

An hyperbolic PDE with periodic transport coefficient
∂u

∂t
− sin(x)

∂u

∂x
= 0 x ∈ [0, 2π), t ∈ (0, 1.571]

u(x, 0) = sin(x), x ∈ [0, 2π) eq.,
with


dx

dt
= sin(x) t ∈ (0, 1.571]

x(0) = x, x ∈ [0, 2π) eq.

Solution: u(x, t) = sin
(
2 tan−1

(
et tan x

2

))
.

0 2 4 6

−1

−0.5

0

0.5

1

Space

V
a
lu

e

0 2 4 6

−1

−0.5

0

0.5

1

Space

V
a
lu

e

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

Space

V
a
lu

e

Exact Solution
u(t

n+1
,X

e
) with INFFT

Equispaced Nodes

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 20 / 20

NFFT in solving hyperbolic PDE Example

Example

An hyperbolic PDE with periodic transport coefficient
∂u

∂t
− sin(x)

∂u

∂x
= 0 x ∈ [0, 2π), t ∈ (0, 1.571]

u(x, 0) = sin(x), x ∈ [0, 2π) eq.,
with


dx

dt
= sin(x) t ∈ (0, 1.571]

x(0) = x, x ∈ [0, 2π) eq.

Solution: u(x, t) = sin
(
2 tan−1

(
et tan x

2

))
.

0 2 4 6

−1

−0.5

0

0.5

1

Space

V
a
lu

e

0 2 4 6

−1

−0.5

0

0.5

1

Space
V

a
lu

e

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

Space

V
a
lu

e

Exact Solution
u(t

n+1
,X

e
) with INFFT

Equispaced Nodes

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 20 / 20

	Theory of Fourier Series
	Trigonometric Polynomials
	Fourier Series for 2-periodic functions
	Convergence results

	An approximation for the Fourier Series
	DFT: Discrete Fourier Trasform
	Error estimate

	Equispaced MFT and FFT
	Equispaced Matrix Fourier Transform
	Equispaced Fast Fourier Transform
	Computational cost and comparison between MFT and FFT

	Nonequispaced DFT and FFT
	Nonequispaced DFT
	Nonequispaced FFT: alghoritm and error estimation
	Comparison between MFT, FFT and NFFT

	NFFT in solving hyperbolic PDE
	A standard hyperbolic PDE
	Solution of an hyperbolic PDE* on equispaced nodes
	Example

