Nonequispaced Fast Fourier Transform and Applications

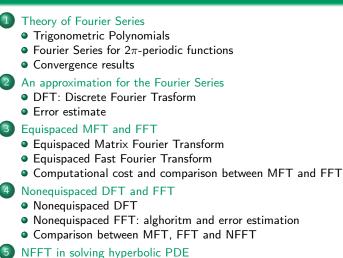
Simone Parisotto simone.parisotto@tin.it

University of Verona Faculty of Mathematical Physical and Natural Science

Bachelor's Degree Course in Applied Mathematics

October 15th 2010

Index



- A standard hyperbolic PDE
- Solution of an hyperbolic PDE* on equispaced nodes
- Example

• Introduction: J. Fourier (superposition principle)

• Introduction: J. Fourier (superposition principle)

Definition (Trigonometric Polynomial of order m and 2π -periodic)

$$P_m(x) = a_0 + \sum_{k=1}^m (a_k \cos kx + b_k \sin kx), \quad \text{with } a_k, b_k \in \mathbb{C}$$

• Introduction: J. Fourier (superposition principle)

Definition (Trigonometric Polynomial of order m and 2π -periodic)

$$P_m(x) = a_0 + \sum_{k=1}^m (a_k \cos kx + b_k \sin kx), \quad \text{with } a_k, b_k \in \mathbb{C}$$

An orthogonal basis for 2π -periodic functions

Let
$$B = \left\{ \cos nx, \sin nx, \ n \in \mathbb{N} \right\}$$
 with
• an inner product $\langle u, v \rangle = \int_0^{2\pi} u(x) \overline{v(x)} \, dx;$
• a norm $||u|| = \sqrt{\langle u, u \rangle}.$

• Introduction: J. Fourier (superposition principle)

Definition (Trigonometric Polynomial of order m and 2π -periodic)

$$P_m(x) = a_0 + \sum_{k=1}^m (a_k \cos kx + b_k \sin kx), \quad \text{with } a_k, b_k \in \mathbb{C}$$

An orthogonal basis for 2π -periodic functions

Let
$$B = \left\{ \cos nx, \sin nx, n \in \mathbb{N} \right\}$$
 with

• an inner product
$$\langle u, v \rangle = \int_{0}^{2\pi} u(x) \overline{v(x)} \, \mathrm{d}x;$$

• a norm
$$||u|| = \sqrt{\langle u, u \rangle}$$
.

Proof of orthogonality

Simone Parisotto (id069215)

NFFT and Applications

October 15th 2010 3 / 20

Trigonometric Fourier Series ($T = 2\pi$)

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx), \ x \in [0, 2\pi)$$

• $a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx, \ a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx \, dx,$
• $b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx \, dx.$

Trigonometric Fourier Series ($T = 2\pi$)

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx), \ x \in [0, 2\pi]$$

•
$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx, \ a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx dx,$$

• $b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx dx.$

Exponential Fourier Series ($T = 2\pi$)

$$f(x) \approx \sum_{k=-\infty}^{+\infty} c_k e^{ikx}, \ x \in [0, 2\pi)$$
$$\bullet \ c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} \, \mathrm{d}x.$$

Trigonometric Fourier Series ($T = 2\pi$)

Exponential Fourier Series ($T = 2\pi$)

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx), \ x \in [0, 2\pi)$$

$$\bullet \ a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx, \ a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx \, dx,$$

$$\bullet \ b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx \, dx.$$

Some useful identities

•
$$e^{i\theta} = \cos \theta + i \sin \theta;$$

• $\cos x = (e^{ix} + e^{-ix})/2;$
• $\sin x = (e^{ix} - e^{-ix})/2;$

•
$$a_k = c_k + c_{-k};$$

•
$$b_{\boldsymbol{k}} = i(c_{\boldsymbol{k}} - c_{-\boldsymbol{k}});$$

•
$$c_0 = a_0/2;$$

• $c_k = (a_k - ib_k)/2;$
• $c_{-k} = (a_k + ib_k)/2.$

Trigonometric Fourier Series ($T = 2\pi$)

Exponential Fourier Series ($T = 2\pi$)

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx), \ x \in [0, 2\pi)$$

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx, \ a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx \, dx,$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx \, dx.$$

Some useful identities

•
$$e^{i\theta} = \cos\theta + i\sin\theta;$$

• $\cos x = (e^{ix} + e^{-ix})/2;$
• $\sin x = (e^{ix} - e^{-ix})/2;$

•
$$a_k = c_k + c_{-k};$$

• $b_l = i(c_l - c_{-l});$

• $c_0 = a_0/2;$ • $c_k = (a_k - ib_k)/2;$ • $c_{-k} = (a_k + ib_k)/2.$

Trigonometric and Exponential Fourier Series (T = l = b - a):

- Replacing with $2\pi(x-a)/(b-a)$, $x \in [a, b)$;
- Changing the extremes of integration with a and b;
- Replacing with 2/(b a) (Trigonometric FS), with 1/(b a) (Exponential FS).

Convergence Results

Convergence Results

Theorem (Some type of Convergences)

Let $f(x) = 2\pi$ -periodic and C^1 -piecewise function on the interval $[0, 2\pi)$. Then, the Fourier Series of f(x) converges

- uniformly to f(x) on every compact set which does not contain any discontnuity point;
- to the average of right and left limits of f to x* if x* is a discontinuity point;

Let f(x) a 2π -periodic function on the interval $[0, 2\pi)$, with $\int_{0}^{2\pi} |f(x)|^2 dx < +\infty$, then

$$\int_{0}^{2\pi} |f(x) - f_{N}(x)|^{2} dx \leq \int_{0}^{2\pi} |f(x) - P_{N}(x)|^{2}$$

for any trigonometric polynomial P_N of order N (2nd order mean), and

$$\lim_{N\to+\infty}\int_0^{2\pi}|f(x)-f_N(x)|^2\mathrm{d}x=0.$$

Convergence Results

Theorem (Some type of Convergences)

Let $f(x) = 2\pi$ -periodic and C^1 -piecewise function on the interval $[0, 2\pi)$. Then, the Fourier Series of f(x) converges

- uniformly to f(x) on every compact set which does not contain any discontnuity point;
- to the average of right and left limits of f to x* if x* is a discontinuity point;

Let f(x) a 2π -periodic function on the interval $[0, 2\pi)$, with $\int_{0}^{2\pi} |f(x)|^2 dx < +\infty$, then

$$\int_{0}^{2\pi} |f(x) - f_{N}(x)|^{2} dx \leq \int_{0}^{2\pi} |f(x) - P_{N}(x)|^{2}$$

for any trigonometric polynomial P_N of order N (2nd order mean), and

$$\lim_{N\to+\infty}\int_0^{2\pi}|f(x)-f_N(x)|^2\mathrm{d}x=0.$$

Bessel–Parseval Identity

$$\text{In the same previous hypotheses: } \frac{1}{\pi} \int_0^{2\pi} |f(\mathbf{x})|^2 \mathrm{d}\mathbf{x} = \frac{\mathbf{a}_0}{2} + \sum_{n=1}^\infty \left(|\mathbf{a}_k|^2 + |b_k|^2 \right) = 2 \sum_{k \in \mathbb{Z}} |c_k|^2.$$

Standard Problem

Let $f(x) : [a, b) \to \mathbb{C}$ a periodic function. We suppose that f(x) can be written as:

$$f(x) = \sum_{k=-\infty}^{+\infty} c_k e^{i2\pi k (rac{x-a}{b-a})}, ext{ subject to previous convergence results.}$$

Standard Problem

Let $f(x) : [a, b) \to \mathbb{C}$ a periodic function. We suppose that f(x) can be written as:

$$f(x) = \sum_{k=-\infty}^{+\infty} c_k e^{i2\pi k(\frac{x-a}{b-a})}, \text{ subject to previous convergence results.}$$

• For MATLAB: $\phi_k(x) = \frac{e^{i2\pi (k-1-N/2)(x-a)/(b-a)}}{\sqrt{b-a}}, \forall k \in \mathbb{Z}, \text{ orthonormal respect to}$
• $\langle \phi_j, \phi_k \rangle = \int_a^b \phi_j(x) \overline{\phi_k(x)} dx;$
• $\langle \phi_j, \phi_k \rangle_N = \frac{b-a}{N} \sum_{n=1}^N \phi_j(x_n) \overline{\phi_k(x_n)}$

Standard Problem

Let $f(x) : [a, b) \to \mathbb{C}$ a periodic function. We suppose that f(x) can be written as:

$$f(x) = \sum_{k=-\infty}^{+\infty} c_k e^{i2\pi k(\frac{x-a}{b-a})}, \text{ subject to previous convergence results.}$$

• For MATLAB: $\phi_k(x) = \frac{e^{i2\pi (k-1-N/2)(x-a)/(b-a)}}{\sqrt{b-a}}, \forall k \in \mathbb{Z}, \text{ orthonormal respect to}$
• $\langle \phi_j, \phi_k \rangle = \int_a^b \phi_j(x) \overline{\phi_k(x)} dx;$
• $\langle \phi_j, \phi_k \rangle_N = \frac{b-a}{N} \sum_{n=1}^N \phi_j(x_n) \overline{\phi_k(x_n)} \text{ with } -N+1 \le j-k \le N-1.$

Standard Problem

Let $f(x) : [a, b) \to \mathbb{C}$ a periodic function. We suppose that f(x) can be written as:

$$f(x) = \sum_{k=-\infty}^{+\infty} c_k e^{i2\pi k(\frac{x-a}{b-a})}, \text{ subject to previous convergence results.}$$

• For MATLAB: $\phi_k(x) = \frac{e^{i2\pi (k-1-N/2)(x-a)/(b-a)}}{\sqrt{b-a}}, \forall k \in \mathbb{Z}, \text{ orthonormal respect to}$
• $\langle \phi_j, \phi_k \rangle = \int_a^b \phi_j(x) \overline{\phi_k(x)} dx;$
• $\langle \phi_j, \phi_k \rangle_N = \frac{b-a}{N} \sum_{n=1}^N \phi_j(x_n) \overline{\phi_k(x_n)} \text{ with } -N+1 \le j-k \le N-1.$

How to approximate c_k and $f(x_k)$, with $k = 1, \ldots, N$

$$c_k = \int_a^b f(x) \overline{\phi_k(x)} \mathrm{d}x$$

Simone Parisotto (id069215)

Standard Problem

Let $f(x) : [a, b) \to \mathbb{C}$ a periodic function. We suppose that f(x) can be written as:

$$f(x) = \sum_{k=-\infty}^{+\infty} c_k e^{i2\pi k(\frac{x-a}{b-a})}, \text{ subject to previous convergence results.}$$

• For MATLAB: $\phi_k(x) = \frac{e^{i2\pi (k-1-N/2)(x-a)/(b-a)}}{\sqrt{b-a}}, \forall k \in \mathbb{Z}, \text{ orthonormal respect to}$
• $\langle \phi_j, \phi_k \rangle = \int_a^b \phi_j(x) \overline{\phi_k(x)} dx;$
• $\langle \phi_j, \phi_k \rangle_N = \frac{b-a}{N} \sum_{n=1}^N \phi_j(x_n) \overline{\phi_k(x_n)} \text{ with } -N+1 \le j-k \le N-1.$

How to approximate c_k and $f(x_k)$, with $k = 1, \ldots, N$

$$c_{k} = \int_{a}^{b} f(x)\overline{\phi_{k}(x)} dx \approx \frac{\sqrt{b-a}}{N} \sum_{n=1}^{N} \left(f(x_{n})e^{iN\pi y_{n}} \right) e^{-i2\pi(k-1)y_{n}} = \hat{f}_{k}, \text{ (DFT)}.$$

Standard Problem

Let $f(x) : [a, b) \to \mathbb{C}$ a periodic function. We suppose that f(x) can be written as:

$$f(x) = \sum_{k=-\infty}^{+\infty} c_k e^{i2\pi k(\frac{x-a}{b-a})}, \text{ subject to previous convergence results.}$$

• For MATLAB: $\phi_k(x) = \frac{e^{i2\pi (k-1-N/2)(x-a)/(b-a)}}{\sqrt{b-a}}, \forall k \in \mathbb{Z}, \text{ orthonormal respect to}$
• $\langle \phi_j, \phi_k \rangle = \int_a^b \phi_j(x) \overline{\phi_k(x)} dx;$
• $\langle \phi_j, \phi_k \rangle_N = \frac{b-a}{N} \sum_{n=1}^N \phi_j(x_n) \overline{\phi_k(x_n)} \text{ with } -N+1 \le j-k \le N-1.$

How to approximate c_k and $f(x_k)$, with $k = 1, \ldots, N$

$$c_{k} = \int_{a}^{b} f(x)\overline{\phi_{k}(x)} dx \approx \frac{\sqrt{b-a}}{N} \sum_{n=1}^{N} \left(f(x_{n})e^{iN\pi y_{n}} \right) e^{-i2\pi(k-1)y_{n}} = \hat{f}_{k}, \text{ (DFT)}.$$

$$f(x_{k}) \approx \hat{\tilde{f}}_{k} = \sum_{n=1}^{N} \hat{f}_{n}\phi_{n}(x_{k}) = \frac{N}{\sqrt{b-a}} \frac{1}{N} \left(\sum_{n=1}^{N} \hat{f}_{n}e^{i2\pi(n-1)y_{k}} \right) e^{-iN\pi y_{k}} \text{ (IDFT)}.$$

Simone Parisotto (id069215)

Error estimate

Truncation error

$$\int_a^b \left| f(x) - \sum_{j=1}^N c_j \phi_j(x) \right|^2 \mathrm{d}x = \sum_{k \in J} |c_k|^2 \text{ with } J = \mathbb{Z} \setminus \{1, \dots, N\}.$$

Error estimate

Truncation error

$$\int_a^b \left| f(x) - \sum_{j=1}^N c_j \phi_j(x) \right|^2 \mathrm{d}x = \sum_{k \in J} |c_k|^2 \text{ with } J = \mathbb{Z} \setminus \{1, \ldots, N\}.$$

Estimate for c_k (integrating by parts) - Spectral convergence

 $f(x) \in C^1 \Rightarrow c_k = \mathcal{O}(k^{-1})$ $f(x) \in C^2 \Rightarrow c_k = \mathcal{O}(k^{-2})$

 $f(x) \in C^{\infty}$ decays faster than any negative power of k

Error estimate

Truncation error

$$\int_a^b \left| f(x) - \sum_{j=1}^N c_j \phi_j(x) \right|^2 \mathrm{d}x = \sum_{k \in J} |c_k|^2 \text{ with } J = \mathbb{Z} \setminus \{1, \dots, N\}.$$

Estimate for c_k (integrating by parts) - Spectral convergence

 $f(x) \in C^1 \Rightarrow c_k = \mathcal{O}(k^{-1})$ $f(x) \in C^2 \Rightarrow c_k = \mathcal{O}(k^{-2})$

 $f(x) \in C^{\infty}$ decays faster than any negative power of k

Upper-bound (Boyd)

•
$$|f(x) - f_N(x)| \le \sum_{k \in J} |c_k|$$
, where $f_N = \sum_{k=1}^N c_k \phi_k(x)$;
• $|f(x) - F_N(x)| \le 2 \sum_{k \in J} |c_k|$, where $F_N = \sum_{k=1}^N \hat{f}_k \phi_k(x)$.

Trapezoidal quadrature formula

$$\int_{a}^{b} g(x) dx \approx \frac{b-a}{2N} \Big(g(x_{1}) + 2 \sum_{k=2}^{N} g(x_{k}) + g(x_{N+1}) \Big) = \frac{b-a}{N} \sum_{k=1}^{N} g(x_{k}).$$

Trapezoidal quadrature formula

$$\int_{a}^{b} g(x) dx \approx \frac{b-a}{2N} \Big(g(x_1) + 2 \sum_{k=2}^{N} g(x_k) + g(x_{N+1}) \Big) = \frac{b-a}{N} \sum_{k=1}^{N} g(x_k).$$

DFT is exact on N points for $\{\phi_k\}_{k=-N+1}^{N-1}$

- $\phi_k(x)$ is orthonormal respect to $\langle \cdot, \cdot \rangle_N$;
- $F_N(x_k)$ is interpolant.

J

Trapezoidal quadrature formula

$$\int_{a}^{b} g(x) dx \approx \frac{b-a}{2N} \Big(g(x_1) + 2 \sum_{k=2}^{N} g(x_k) + g(x_{N+1}) \Big) = \frac{b-a}{N} \sum_{k=1}^{N} g(x_k).$$

DFT is exact on N points for $\{\phi_k\}_{k=-N+1}^{N-1}$

- $\phi_k(x)$ is orthonormal respect to $\langle \cdot, \cdot \rangle_N$;
- $F_N(x_k)$ is interpolant.

J

Proof of the interpolant property

$$\begin{split} & \overline{f}_{N}(x_{k}) = \sum_{n=1}^{N} \widehat{f}_{n} \phi_{n}(x_{k}) = \\ & = \sum_{n=1}^{N} \left(\left(\frac{\sqrt{b-a}}{N} \sum_{m=1}^{N} f(x_{m}) e^{iN\pi y_{m}} \right) e^{-i2\pi (n-1)y_{m}} \right) \frac{e^{i2\pi (n-1-N/2)(x_{k}-a)/(b-a)}}{\sqrt{b-a}} = \\ & = \frac{1}{N} \sum_{m=1}^{N} f(x_{m}) e^{iN\pi (m-1)/N} e^{-iN\pi (k-1)/N} \sum_{n=1}^{N} e^{-i2\pi (n-1)(m-1)/N} e^{i2\pi (n-1)(k-1)/N} = \\ & = \frac{1}{N} \sum_{m=1}^{N} f(x_{m}) e^{i(m-k)\pi} \sum_{n=1}^{N} e^{i2\pi (n-1)(k-m)/N} = \frac{1}{N} f(x_{k})N = f(x_{k}). \end{split}$$

Given N equispaced sampling nodes and M equispaced evaluation points, how to implement DFT and IDFT in Matlab? MFT or FFT.

Given N equispaced sampling nodes and M equispaced evaluation points, how to implement DFT and IDFT in Matlab? MFT or FFT.

1. Matrix Fourier Transform (MFT) and Inverse (IMFT) with M = N

Let
$$(F)_{jk} = e^{-i2\pi(j-1)y_k}$$
 and $y_k = (n-1)/N$, $n = 1, ..., N + 1$:
• $\frac{\sqrt{b-a}}{N} \cdot F[f(x_1)e^{iN\pi y_1}, ..., f(x_N)e^{iN\pi y_N}]^T$ is the MFT;
• $\frac{N}{\sqrt{b-a}} \left(\frac{F^H[\hat{f}_1, ..., \hat{f}_N]}{N}\right) \circ [e^{-i\pi N y_1}, ..., e^{-i\pi N y_N}]$ is the IMFT.

Given N equispaced sampling nodes and M equispaced evaluation points, how to implement DFT and IDFT in Matlab? MFT or FFT.

1. Matrix Fourier Transform (MFT) and Inverse (IMFT) with M = N

Let
$$(F)_{jk} = e^{-i2\pi(j-1)y_k}$$
 and $y_k = (n-1)/N$, $n = 1, ..., N+1$:

•
$$\frac{\sqrt{b-a}}{N} \cdot F[f(x_1)e^{iN\pi y_1}, \dots, f(x_N)e^{iN\pi y_N}]^T$$
 is the MFT;

•
$$\frac{N}{\sqrt{b-a}} \left(\frac{F^H[\hat{f}_1, \dots, \hat{f}_N]}{N} \right) \circ [e^{-i\pi N y_1}, \dots, e^{-i\pi N y_N}] \text{ is the IMFT.}$$

1. Matrix Fourier Transform (MFT) and Inverse (IMFT) with $M \neq N$

•
$$M > N$$
: $\hat{f}_k = \sum_{n=1}^N \hat{f}_n \phi_n(x_k)$, with $k = 1, \dots, M$;

• M < N: there is no difference with the case discussed above.

Simone Parisotto (id069215)

(1965) FFT: Cooley (IBM), Tuckey (Princeton)

(1965) FFT: Cooley (IBM), Tuckey (Princeton)

Some key concepts:

• $N = N_1 + N_2$, $(N_1 = N_2 \text{ with } N \text{ power of } 2)$;

(1965) FFT: Cooley (IBM), Tuckey (Princeton)

Some key concepts:

•
$$N = N_1 + N_2$$
, $(N_1 = N_2 \text{ with } N \text{ power of } 2)$;
• $\hat{f}_k = \sum_{m=0}^{N/2-1} f(x_{2m}) e^{-i2\pi \frac{m}{N/2}k} + e^{-i2\pi \frac{1}{N}k} \sum_{m=0}^{N/2-1} f(x_{2m+1}) e^{-i2\pi \frac{m}{N/2}k}$

 $\mathbf{E}_k {:} \operatorname{DFT}$ of even-indexed part of \mathbf{y}_m

 O_k : DFT of odd-indexed part of y_m

(1965) FFT: Cooley (IBM), Tuckey (Princeton)

Some key concepts:

•
$$N = N_1 + N_2$$
, $(N_1 = N_2 \text{ with } N \text{ power of } 2)$;
• $\hat{f}_k = \sum_{m=0}^{N/2-1} f(x_{2m})e^{-i2\pi \frac{m}{N/2}k} + e^{-i2\pi \frac{1}{N}k} \sum_{m=0}^{N/2-1} f(x_{2m+1})e^{-i2\pi \frac{m}{N/2}k}$

 $\mathbf{E}_k : \mathbf{DFT} \text{ of even-indexed part of } \mathbf{y}_m$

 O_k : DFT of odd-indexed part of y_m

• they are two DFTs of length N/2, so for the periodicity properties of DFT we have

$$E_{k+N/2} = E_k,$$

$$O_{k+N/2} = O_k;$$

Simone Parisotto (id069215)

(1965) FFT: Cooley (IBM), Tuckey (Princeton)

Some key concepts:

•
$$N = N_1 + N_2$$
, $(N_1 = N_2 \text{ with } N \text{ power of } 2)$;
• $\hat{f}_k = \sum_{m=0}^{N/2-1} f(x_{2m}) e^{-i2\pi \frac{m}{N/2}k} + e^{-i2\pi \frac{1}{N}k} \sum_{m=0}^{N/2-1} f(x_{2m+1}) e^{-i2\pi \frac{m}{N/2}k}$

 $\mathbf{E}_k : \mathbf{DFT} \text{ of even-indexed part of } \mathbf{y}_m$

 $\mathrm{O}_k{:}\operatorname{DFT}$ of odd–indexed part of y_m

• they are two DFTs of length N/2, so for the periodicity properties of DFT we have

$$E_{k+N/2} = E_k,$$

$$O_{k+N/2} = O_k;$$

• twiddle factor: $e^{-2\pi i \frac{(k+N/2)}{N}} = e^{-\pi i} e^{-2\pi i \frac{k}{N}} = -e^{-2\pi i \frac{k}{N}};$ • $\hat{f}_k = \begin{cases} E_k + e^{-\frac{2\pi i}{N}k} O_k & \text{if } k < N/2 \\ E_{k-N/2} - e^{-\frac{2\pi i}{N}(k-N/2)} O_{k-N/2} & \text{if } k \ge N/2. \end{cases}$

Fastest Fourier Transform in the West: a FFT library for MATLAB

- written in C (Frigo Johnson);
- fft, ifft, fftshift, ifftshift;
- distributed "wisdom" (size, type of transformation, etc...).

Fastest Fourier Transform in the West: a FFT library for MATLAB

- written in C (Frigo Johnson);
- fft, ifft, fftshift, ifftshift;
- distributed "wisdom" (size, type of transformation, etc...).

2. Fast Fourier Transform (FFT) and Inverse (IFFT) with M = N

•
$$\frac{\sqrt{b-a}}{N} \cdot \text{fftshift}\left(\text{fft}\left([f(x_1), \dots, f(x_n)]^T\right)\right)$$
 is the FFT;
• $\frac{N}{\sqrt{b-a}} \cdot \text{ifft}\left(\text{fftshift}\left([\hat{f}_1, \dots, \hat{f}_N]\right)\right)$ is the IFFT.

Fastest Fourier Transform in the West: a FFT library for MATLAB

- written in C (Frigo Johnson);
- fft, ifft, fftshift, ifftshift;
- distributed "wisdom" (size, type of transformation, etc...).

2. Fast Fourier Transform (FFT) and Inverse (IFFT) with M = N

•
$$\frac{\sqrt{b-a}}{N} \cdot \text{fftshift}\left(\text{fft}\left([f(x_1), \dots, f(x_n)]^T\right)\right)$$
 is the FFT;
• $\frac{N}{\sqrt{b-a}} \cdot \text{ifft}\left(\text{fftshift}\left([\hat{f}_1, \dots, \hat{f}_N]\right)\right)$ is the IFFT.

2. Fast Fourier Transform (FFT) and Inverse (IFFT) with $M \neq N$

•
$$M > N$$
: $\hat{f}^* = \begin{bmatrix} 0, \dots, 0, \\ (M-N)/2 \text{ items} \end{bmatrix};$
• $M < N$: $\hat{f}^* = \begin{bmatrix} \hat{f}_1, \dots, \hat{f}_{\underline{M-N}}, \\ \underbrace{\hat{f}_1, \dots, \hat{f}_{\underline{M-N}}}_{2}, \\ \underbrace{\hat{f}_1, \dots, \hat{f}_{\underline{M-N}}}_{2}, \\ \underbrace{\hat{f}_{\underline{M-N}}, \dots, \hat{f}_{\underline{M-N}}}_{2}, \underbrace{\hat{f}_{\underline{M+N}}, \dots, \hat{f}_{N}}_{2}].$ (!)

Simone Parisotto (id069215)

NFFT and Applications

Computational cost and comparison between MFT and FFT

Computational cost and comparison between MFT and FFT

Computational cost (M = N equispaced nodes)

From space domain to frequency domain or backward the computational cost is

● MFT: *O*(*N*²);

• FFT: $\mathcal{O}(N \log_2 N)$.

Computational cost and comparison between MFT and FFT

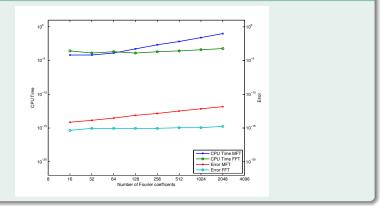
Computational cost (M = N equispaced nodes)

From space domain to frequency domain or backward the computational cost is

● MFT: *O*(*N*²);

● FFT: *O*(*N* log₂ *N*).

Comparison MFT-FFT, test $f(x) = \sin(2*pi*(x-a)/(b-a)) + 2*\cos(4*2*pi*(x-a)/(b-a))$



What if we have M nonequispaced evaluation nodes?

What if we have *M* nonequispaced evaluation nodes? NDFT or NFFT!

What if we have *M* nonequispaced evaluation nodes? NDFT or NFFT!

Nonequispaced Discrete Fourier Transform (NDFT) and Inverse (INDFT) by Kunis

•
$$\hat{f}(x) = \sum_{k=-N/2}^{N/2-1} f(x) e^{i2\pi kx}$$
 (NDFT);

•
$$\hat{f}_k = \sum_{k=-N/2}^{N/2-1} \hat{f}_k e^{-i2\pi ky}$$
 (INDFT).

with $x, y \in \left[-\frac{1}{2}, \frac{1}{2}\right)$. This works for M = N and $M \neq N$.

What if we have M nonequispaced evaluation nodes? NDFT or NFFT!

Nonequispaced Discrete Fourier Transform (NDFT) and Inverse (INDFT) by Kunis

•
$$\hat{f}(x) = \sum_{k=-N/2}^{N/2-1} f(x) e^{i2\pi kx}$$
 (NDFT);

•
$$\hat{f}_k = \sum_{k=-N/2}^{N/2-1} \hat{f}_k e^{-i2\pi ky}$$
 (INDFT).

with $x, y \in \left[-\frac{1}{2}, \frac{1}{2}\right)$. This works for M = N and $M \neq N$.

Differences between Kunis notations and the ours: how to fix?

- In Kunis: $x \in \left[-\frac{1}{2}, \frac{1}{2}\right)$ but we consider $y \in [0, 1)$.
- DFT, NDFT (and *Inverses*) presents a "minus" factor in the exponential.

What if we have M nonequispaced evaluation nodes? NDFT or NFFT!

Nonequispaced Discrete Fourier Transform (NDFT) and Inverse (INDFT) by Kunis

•
$$\hat{f}(x) = \sum_{k=-N/2}^{N/2-1} f(x) e^{i2\pi kx}$$
 (NDFT);

•
$$\hat{f}_k = \sum_{k=-N/2}^{N/2-1} \hat{f}_k e^{-i2\pi ky}$$
 (INDFT).

with $x, y \in [-\frac{1}{2}, \frac{1}{2}]$. This works for M = N and $M \neq N$.

Differences between Kunis notations and the ours: how to fix?

- In Kunis: $x \in \left[-\frac{1}{2}, \frac{1}{2}\right)$ but we consider $y \in [0, 1)$.
- DFT, NDFT (and Inverses) presents a "minus" factor in the exponential.

How to fix this issue?

•
$$x \in [a, b) \rightarrow y = -((x - a)/(b - a) - 0.5);$$
 • $y \in [-\frac{1}{2}, \frac{1}{2}] \rightarrow x = -(b - a)(y - 0.5) + a.$

• We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

• We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

- nodes $x_j = \left[-\frac{1}{2}, \frac{1}{2}\right)$ with $j = 0 \dots, N$;
- frequencies $I_N = \left[-\frac{N}{2}, \frac{N}{2}\right];$
- an oversampling factor $\sigma > 1$, setting $n = \sigma N$.

• We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

- nodes $x_j = \left[-\frac{1}{2}, \frac{1}{2}\right)$ with $j = 0 \dots, N$;
- frequencies $I_N = \left[-\frac{N}{2}, \frac{N}{2}\right];$
- an oversampling factor $\sigma > 1$, setting $n = \sigma N$.

$$\mathsf{IDEA:} \ f(x) = \sum_{k \in I_N} \hat{f}_k e^{-2\pi i k x} \approx s_1(x) = \sum_{l \in I_n} g_l \tilde{\varphi} \Big(x - \frac{l}{n} \Big), \text{ with } \tilde{\varphi}(x) = \sum_{r \in \mathbb{Z}} \varphi(x + r), \text{ with } \hat{f}_k \text{ given.}$$

Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

Nonequispaced FFT: alghoritm and error estimation

• We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

- nodes $x_j = [-\frac{1}{2}, \frac{1}{2})$ with j = 0..., N;
- frequencies $I_N = \left[-\frac{N}{2}, \frac{N}{2}\right];$
- an oversampling factor $\sigma > 1$, setting $n = \sigma N$.

$$\mathsf{IDEA:} \ f(x) = \sum_{k \in I_N} \hat{f}_k e^{-2\pi i k x} \approx \mathfrak{s}_1(x) = \sum_{l \in I_n} g_l \tilde{\varphi} \left(x - \frac{l}{n} \right), \ \text{with} \ \tilde{\varphi}(x) = \sum_{r \in \mathbb{Z}} \varphi(x+r), \ \text{with} \ \hat{f}_k \ \text{given}.$$

1. Cut-off in frequency domain

• We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

- nodes $x_j = [-\frac{1}{2}, \frac{1}{2})$ with j = 0..., N;
- frequencies $I_N = \left[-\frac{N}{2}, \frac{N}{2}\right];$
- an oversampling factor $\sigma > 1$, setting $n = \sigma N$.

$$\mathsf{IDEA:} \ f(x) = \sum_{k \in I_N} \frac{\hat{f}_k}{k} e^{-2\pi i k x} \approx s_1(x) = \sum_{l \in I_N} g_l \tilde{\varphi} \Big(x - \frac{l}{n} \Big), \text{ with } \tilde{\varphi}(x) = \sum_{r \in \mathbb{Z}} \varphi(x + r), \text{ with } \hat{f}_k \text{ given.}$$

1. Cut-off in frequency domain

$$s_{1}(x) = \sum_{k \in \mathbb{Z}} \frac{\hat{g}_{k} \hat{\varphi}_{k}}{e^{-2\pi i k x}} = \sum_{k \in I_{n}} \hat{g}_{k} \hat{\varphi}_{k} e^{-2\pi i k x} + \sum_{r \in \mathbb{Z} \setminus \{0\}} \sum_{k \in I_{n}} \hat{g}_{k} \hat{\varphi}_{k+nr} e^{-2\pi i (k+nr) x}$$

Simone Parisotto (id069215)

• We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

- nodes $x_j = \left[-\frac{1}{2}, \frac{1}{2}\right)$ with $j = 0 \dots, N$;
- frequencies $I_N = \left[-\frac{N}{2}, \frac{N}{2}\right];$
- an oversampling factor $\sigma > 1$, setting $n = \sigma N$.

$$\mathsf{IDEA:}\ f(x) = \sum_{k \in I_N} \frac{\hat{f}_k}{\ell_k} e^{-2\pi i k x} \approx s_1(x) = \sum_{l \in I_N} g_l \tilde{\varphi} \left(x - \frac{l}{n} \right), \text{ with } \tilde{\varphi}(x) = \sum_{r \in \mathbb{Z}} \varphi(x+r), \text{ with } \hat{f}_k \text{ given.}$$

1. Cut-off in frequency domain

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{[-\frac{m}{n},\frac{m}{n}]}(x)$, $m \ll N$.

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{[-\frac{m}{n},\frac{m}{n}]}(x), \ m \ll N.$

$$f(x_j) \approx s_1(x_j) \approx s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}\left(x_j - \frac{l}{n}\right), \text{ with } \tilde{\psi} = \sum_{r \in \mathbb{Z}} \psi(x+r)$$

where $I_{\boldsymbol{n},\boldsymbol{m}}(x_{\boldsymbol{j}}) = \{l \in I_{\boldsymbol{n}} : nx_{\boldsymbol{j}} - \boldsymbol{m} \leq l \leq nx_{\boldsymbol{j}} + \boldsymbol{m}\}.$

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{[-\frac{m}{n},\frac{m}{n}]}(x)$, $m \ll N$.

$$f(x_j) \approx s_1(x_j) \approx s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}\left(x_j - \frac{l}{n}\right), \text{ with } \tilde{\psi} = \sum_{r \in \mathbb{Z}} \psi(x+r)$$

where $I_{\boldsymbol{n},\boldsymbol{m}}(x_{\boldsymbol{j}}) = \{l \in I_{\boldsymbol{n}} : nx_{\boldsymbol{j}} - \boldsymbol{m} \leq l \leq nx_{\boldsymbol{j}} + \boldsymbol{m}\}.$

It contains at most 2m + 1 nonzero summands;

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{[-\frac{m}{n},\frac{m}{n}]}(x)$, $m \ll N$.

$$f(x_j) \approx s_1(x_j) \approx s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}\left(x_j - \frac{l}{n}\right), \text{ with } \tilde{\psi} = \sum_{r \in \mathbb{Z}} \psi(x+r)$$

where $I_{\boldsymbol{n},\boldsymbol{m}}(x_{\boldsymbol{j}}) = \{I \in I_{\boldsymbol{n}} : nx_{\boldsymbol{j}} - \boldsymbol{m} \leq I \leq nx_{\boldsymbol{j}} + \boldsymbol{m}\}.$

- It contains at most 2m + 1 nonzero summands;
- Truncation error.

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{[-\frac{m}{n},\frac{m}{n}]}(x), \ m \ll N.$

$$f(x_j) \approx s_1(x_j) \approx s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}\left(x_j - \frac{l}{n}\right), \text{ with } \tilde{\psi} = \sum_{r \in \mathbb{Z}} \psi(x+r)$$

where $I_{n,m}(x_j) = \{I \in I_n : nx_j - m \le I \le nx_j + m\}.$

- It contains at most 2m + 1 nonzero summands;
- Truncation error.

The alghoritm

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{[-\frac{m}{n},\frac{m}{n}]}(x)$, $m \ll N$.

$$f(x_j) \approx s_1(x_j) \approx s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}\left(x_j - \frac{l}{n}\right), \text{ with } \tilde{\psi} = \sum_{r \in \mathbb{Z}} \psi(x+r)$$

where $I_{n,m}(x_j) = \{I \in I_n : nx_j - m \le I \le nx_j + m\}.$

- It contains at most 2m + 1 nonzero summands;
- Truncation error.

The alghoritm

Given $N \in \mathbb{N}$, $\sigma > 1$, $n = \sigma N$, $x_j \in [-\frac{1}{2}, \frac{1}{2})$ and $\hat{f}_k \in \mathbb{C}$:

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{\left[-\frac{m}{n}, \frac{m}{n}\right]}(x), \ m \ll N.$

$$f(x_j) \approx s_1(x_j) \approx s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}\left(x_j - \frac{l}{n}\right), \text{ with } \tilde{\psi} = \sum_{r \in \mathbb{Z}} \psi(x+r)$$

where $I_{n,m}(x_j) = \{I \in I_n : nx_j - m \le I \le nx_j + m\}.$

- It contains at most 2m + 1 nonzero summands;
- Truncation error.

The alghoritm

Given $N \in \mathbb{N}$, $\sigma > 1$, $n = \sigma N$, $x_j \in [-\frac{1}{2}, \frac{1}{2})$ and $\hat{f}_k \in \mathbb{C}$:

1 Precompute $\hat{\varphi}_k$, with $k \in I_N$.

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{\left[-\frac{m}{n}, \frac{m}{n}\right]}(x), \ m \ll N.$

$$f(x_j) \approx s_1(x_j) \approx s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}\left(x_j - \frac{l}{n}\right), \text{ with } \tilde{\psi} = \sum_{r \in \mathbb{Z}} \psi(x+r)$$

where $I_{n,m}(x_j) = \{I \in I_n : nx_j - m \le I \le nx_j + m\}.$

- It contains at most 2m + 1 nonzero summands;
- Truncation error.

The alghoritm

Given $N \in \mathbb{N}$, $\sigma > 1$, $n = \sigma N$, $x_j \in [-\frac{1}{2}, \frac{1}{2})$ and $\hat{f}_k \in \mathbb{C}$:

- **1** Precompute $\hat{\varphi}_k$, with $k \in I_N$.
- 2 Precompute $\psi(x_j \frac{l}{n})$, with $l \in I_{n,m}(x_j)$.

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{\left[-\frac{m}{n}, \frac{m}{n}\right]}(x), \ m \ll N.$

$$f(x_j) \approx s_1(x_j) \approx s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}\left(x_j - \frac{l}{n}\right), \text{ with } \tilde{\psi} = \sum_{r \in \mathbb{Z}} \psi(x+r)$$

where $I_{n,m}(x_j) = \{I \in I_n : nx_j - m \le I \le nx_j + m\}.$

- It contains at most 2m + 1 nonzero summands;
- Truncation error.

The alghoritm

Given $N \in \mathbb{N}$, $\sigma > 1$, $n = \sigma N$, $x_j \in \left[-\frac{1}{2}, \frac{1}{2}\right)$ and $\hat{f}_k \in \mathbb{C}$:

- **1** Precompute $\hat{\varphi}_k$, with $k \in I_N$.
- 2 Precompute $\psi(x_j \frac{l}{n})$, with $l \in I_{n,m}(x_j)$.

③ Generate
$$\hat{g}_k = \hat{f}_k / \hat{arphi}_k$$
, with $k \in I_N$.

Simone Parisotto (id069215)

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{\left[-\frac{m}{n}, \frac{m}{n}\right]}(x), \ m \ll N.$

$$f(x_j) \approx s_1(x_j) \approx s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}\left(x_j - \frac{l}{n}\right), \text{ with } \tilde{\psi} = \sum_{r \in \mathbb{Z}} \psi(x+r)$$

where $I_{n,m}(x_j) = \{I \in I_n : nx_j - m \le I \le nx_j + m\}.$

- It contains at most 2m + 1 nonzero summands;
- Truncation error.

The alghoritm

Given $N \in \mathbb{N}$, $\sigma > 1$, $n = \sigma N$, $x_j \in [-\frac{1}{2}, \frac{1}{2})$ and $\hat{f}_k \in \mathbb{C}$:

1 Precompute $\hat{\varphi}_k$, with $k \in I_N$.

2 Precompute
$$\psi(x_j - \frac{l}{n})$$
, with $l \in I_{n,m}(x_j)$.

3 Generate
$$\hat{g}_k = \hat{f}_k / \hat{\varphi}_k$$
, with $k \in I_N$.

Ompute g_l using a d-variate FFT, in our case d = 1 (FFTW library is used).

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{[-\frac{m}{n},\frac{m}{n}]}(x)$, $m \ll N$.

$$f(x_j) \approx s_1(x_j) \approx s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}\left(x_j - \frac{l}{n}\right), \text{ with } \tilde{\psi} = \sum_{r \in \mathbb{Z}} \psi(x+r)$$

where $I_{n,m}(x_j) = \{I \in I_n : nx_j - m \le I \le nx_j + m\}.$

- It contains at most 2m + 1 nonzero summands;
- Truncation error.

The alghoritm

Given
$$N \in \mathbb{N}$$
, $\sigma > 1$, $n = \sigma N$, $x_j \in [-\frac{1}{2}, \frac{1}{2})$ and $\hat{f}_k \in \mathbb{C}$:

1 Precompute
$$\hat{\varphi}_k$$
, with $k \in I_N$.

2 Precompute
$$\psi(x_j - \frac{l}{n})$$
, with $l \in I_{n,m}(x_j)$.

3 Generate
$$\hat{g}_k = \hat{f}_k / \hat{\varphi}_k$$
, with $k \in I_N$.

Or Compute g_l using a *d*-variate FFT, in our case d = 1 (FFTW library is used).

5 Set
$$s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi} \left(x_j - \frac{l}{n} \right).$$

If φ is well localized in time domain $\psi(x) = \varphi(x)\chi_{[-\frac{m}{n},\frac{m}{n}]}(x)$, $m \ll N$.

$$f(x_j) \approx s_1(x_j) \approx s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}\left(x_j - \frac{l}{n}\right), \text{ with } \tilde{\psi} = \sum_{r \in \mathbb{Z}} \psi(x+r)$$

where $I_{\boldsymbol{n},\boldsymbol{m}}(x_{\boldsymbol{j}}) = \{I \in I_{\boldsymbol{n}} : nx_{\boldsymbol{j}} - \boldsymbol{m} \leq I \leq nx_{\boldsymbol{j}} + \boldsymbol{m}\}.$

- It contains at most 2m + 1 nonzero summands;
- Truncation error.

The alghoritm

Given
$$N \in \mathbb{N}$$
, $\sigma > 1$, $n = \sigma N$, $x_j \in [-\frac{1}{2}, \frac{1}{2})$ and $\hat{f}_k \in \mathbb{C}$:
1 Precompute $\hat{\varphi}_k$, with $k \in I_N$.
2 Precompute $\psi(x_j - \frac{l}{n})$, with $l \in I_{n,m}(x_j)$.
3 Generate $\hat{g}_k = \hat{f}_k/\hat{\varphi}_k$, with $k \in I_N$.
3 Compute g_l using a *d*-variate FFT, in our case $d = 1$ (FFTW library is used).
3 Set $s(x_j) = \sum_{l \in I_{n,m}(x_j)} g_l \tilde{\psi}(x_j - \frac{l}{n})$.
The values $s(x_i)$ approximate $f(x_i)$.

Simone Parisotto (id069215)

Error estimate

$$|E(x_j)| = |f(x_j) - s(x_j)| \le \frac{E_a(x_j)}{E_a(x_j)} + \frac{E_t(x_j)}{E_t(x_j)} = C(\sigma, m) ||\hat{f}||_1,$$

Error estimate

$$|\mathbf{E}(\mathbf{x}_j) = |f(\mathbf{x}_j) - \mathbf{s}(\mathbf{x}_j)| \le \mathbf{E}_{\mathbf{a}}(\mathbf{x}_j) + \mathbf{E}_{\mathbf{t}}(\mathbf{x}_j) = C(\sigma, \mathbf{m}) ||\hat{f}||_1,$$

Default window function: Dilated Keiser-Bessel functions

$$\varphi(x) = \frac{1}{\pi} \begin{cases} \frac{\sinh(b\sqrt{m^2 - n^2x^2})}{\sqrt{m^2 - n^2x^2}} & \text{for } |x| \le \frac{m}{n}, & \text{with } b = \pi \left(2 - \frac{1}{\alpha}\right), \\ \frac{\sinh(b\sqrt{n^2x^2 - m^2})}{\sqrt{n^2x^2 - m^2}} & \text{otherwise}, \end{cases}$$

$$\hat{\varphi}_{k} = \frac{1}{n} \begin{cases} l_{0} \left(m \sqrt{b^{2} - \left(\frac{2\pi k}{n}\right)^{2}} \right) & \text{for } k = -n \left(1 - \frac{1}{2\sigma}\right), \dots, n \left(1 - \frac{1}{2\sigma}\right), \\ 0 & \text{otherwise,} \end{cases}$$

with
$$C(\sigma, m) = 4\pi(\sqrt{m} + m) \sqrt[4]{1 - \frac{1}{\sigma}} e^{-2\pi m \sqrt{1 - \frac{1}{\sigma}}}$$

Comparison between MFT, FFT and NFFT

Comparison between MFT, FFT and NFFT

Computational Cost

• NDFT: *O*(*NM*);

• NFFT: $\mathcal{O}((\sigma N)^d \log(\sigma N) + m^d M)$.

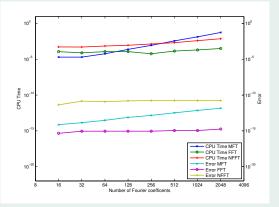
Comparison between MFT, FFT and NFFT

Computational Cost

• NDFT: *O*(*NM*);

• NFFT: $\mathcal{O}((\sigma N)^d \log(\sigma N) + m^d M)$.

Comparison between MFT, FFT and NFFT: from frequency domain to space domain



Simone Parisotto (id069215)

17 / 20

A standard hyperbolic PDE

A simple hyperbolic PDE

$$\begin{cases} \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 & x \in \mathbb{R}, \ a \neq 0, \ t > 0; \\ u(x, 0) = u_0(x) & x \in \mathbb{R}. \end{cases}$$

A standard hyperbolic PDE

A simple hyperbolic PDE

$$\begin{cases} \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 & x \in \mathbb{R}, \ a \neq 0, \ t > 0; \\ u(x, 0) = u_0(x) & x \in \mathbb{R}. \end{cases}$$

Solution: $u(x, t) = u_0(x - at)$, a wave travelling at at the speed a.

A standard hyperbolic PDE

A simple hyperbolic PDE

$$\begin{cases} \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 & x \in \mathbb{R}, \ a \neq 0, \ t > 0; \\ u(x, 0) = u_0(x) & x \in \mathbb{R}. \end{cases}$$

Solution: $u(x, t) = u_0(x - at)$, a wave travelling at at the speed a.

Characteristics curves x(t) on the plane (x, t)

$$x(t) \text{ solution of ODE } \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = a & t > 0\\ x(0) = x_0, & x_0 \in \mathbb{R}. \end{cases}$$

The solution u(x, t) is *constant* along them because

$$\frac{\mathrm{d}}{\mathrm{d}t}u(x,t) = \frac{\mathrm{d}t}{\mathrm{d}t}\frac{\partial u}{\partial t}(x,t) + \frac{\mathrm{d}x}{\mathrm{d}t}\frac{\partial u}{\partial x}(x,t) = \frac{\partial u}{\partial t}(x,t) + \frac{\partial u}{\partial x}(x,t) = 0.$$

Given a source f(x, t) instead of 0 and a = a(x, t), the result is the same (changing the colored text).

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

Forward and Backward Characteristic

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

Forward and Backward Characteristic

• Forward Characteristic: no! $(u(x_n, t_f) = u_0(x_s), x_n \in \{x_{ne}\}_{ne}, + \text{NFFT} + \text{IFFT})$

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

Forward and Backward Characteristic

- Forward Characteristic: no! $(u(x_n, t_f) = u_0(x_s), x_n \in \{x_{ne}\}_{ne}, + \text{NFFT} + \text{IFFT})$
- Backward Characteristic:

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

Forward and Backward Characteristic

• Forward Characteristic: no! $(u(x_n, t_f) = u_0(x_s), x_n \in \{x_{ne}\}_{ne}, + NFFT + IFFT)$

• Backward Characteristic: setting $\tilde{t} = -t$ and $\tilde{x}(\tilde{t}) = x_s$

$$x_n \in \{x_{ne}\}_{ne} \text{ solution of } \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -a(x,t) & t \in [-t_f, -t_0] \\ x(-t_f) = x_s, & x_s \in \{x_e\}_e \text{ equispaced.} \end{cases}$$

so $u(x_s, t_f) = u_0(x_n)$.

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

Forward and Backward Characteristic

- Forward Characteristic: no! $(u(x_n, t_f) = u_0(x_s), x_n \in \{x_{ne}\}_{ne}, + NFFT + IFFT)$
- Backward Characteristic: setting $\tilde{t} = -t$ and $\tilde{x}(\tilde{t}) = x_s$

$$x_n \in \{x_{ne}\}_{ne} \text{ solution of } \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -a(x,t) & t \in [-t_f, -t_0] \\ x(-t_f) = x_s, & x_s \in \{x_e\}_e \text{ equispaced.} \end{cases}$$

so $u(x_s, t_f) = u_0(x_n)$. We can solve the ODE with rk45 (adaptative) in MATLAB.

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

Forward and Backward Characteristic

- Forward Characteristic: no! $(u(x_n, t_f) = u_0(x_s), x_n \in \{x_{ne}\}_{ne}, + NFFT + IFFT)$
- Backward Characteristic: setting $\tilde{t} = -t$ and $\tilde{x}(\tilde{t}) = x_s$

$$x_n \in \{x_{ne}\}_{ne} \text{ solution of } \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -a(x,t) & t \in [-t_f, -t_0] \\ x(-t_f) = x_s, & x_s \in \{x_e\}_e \text{ equispaced.} \end{cases}$$

so $u(x_s, t_f) = u_0(x_n)$. We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

Forward and Backward Characteristic

- Forward Characteristic: no! $(u(x_n, t_f) = u_0(x_s), x_n \in \{x_{ne}\}_{ne}, + NFFT + IFFT)$
- Backward Characteristic: setting $\tilde{t} = -t$ and $\tilde{x}(\tilde{t}) = x_s$

$$x_n \in \{x_{ne}\}_{ne} \text{ solution of } \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -a(x,t) & t \in [-t_f, -t_0] \\ x(-t_f) = x_s, & x_s \in \{x_e\}_e \text{ equispaced.} \end{cases}$$

so $u(x_s, t_f) = u_0(x_n)$. We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm

Are given:

- a set of x_s equispaced nodes and a time interval [t₀, t_f];
- starting values u₀(x_s);
- an hyperbolic PDE*.

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

Forward and Backward Characteristic

- Forward Characteristic: no! $(u(x_n, t_f) = u_0(x_s), x_n \in \{x_{ne}\}_{ne}, + NFFT + IFFT)$
- Backward Characteristic: setting $\tilde{t} = -t$ and $\tilde{x}(\tilde{t}) = x_s$

$$x_n \in \{x_{ne}\}_{ne} \text{ solution of } \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -a(x,t) & t \in [-t_f, -t_0] \\ x(-t_f) = x_s, & x_s \in \{x_e\}_e \text{ equispaced.} \end{cases}$$

so $u(x_s, t_f) = u_0(x_n)$. We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm

Are given:

- a set of x_s equispaced nodes and a time interval [t₀, t_f];
- starting values u₀(x_s);
- an hyperbolic PDE*.

2 Find x_n with Bacward Characteristic, with x_s as starting value.

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

Forward and Backward Characteristic

- Forward Characteristic: no! $(u(x_n, t_f) = u_0(x_s), x_n \in \{x_{ne}\}_{ne}, + NFFT + IFFT)$
- Backward Characteristic: setting $\tilde{t} = -t$ and $\tilde{x}(\tilde{t}) = x_s$

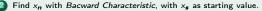
$$x_n \in \{x_{ne}\}_{ne} \text{ solution of } \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -a(x,t) & t \in [-t_f, -t_0] \\ x(-t_f) = x_s, & x_s \in \{x_e\}_e \text{ equispaced.} \end{cases}$$

so $u(x_s, t_f) = u_0(x_n)$. We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm

Are given:

- a set of x_s equispaced nodes and a time interval [t₀, t_f];
- starting values u₀(x_s);
- an hyperbolic PDE*.



Compute FFT on the starting values $u_0(x_s)$.

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

Forward and Backward Characteristic

- Forward Characteristic: no! $(u(x_n, t_f) = u_0(x_s), x_n \in \{x_{ne}\}_{ne}, + NFFT + IFFT)$
- Backward Characteristic: setting $\tilde{t} = -t$ and $\tilde{x}(\tilde{t}) = x_s$

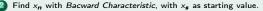
$$x_n \in \{x_{ne}\}_{ne} \text{ solution of } \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -a(x,t) & t \in [-t_f, -t_0] \\ x(-t_f) = x_s, & x_s \in \{x_e\}_e \text{ equispaced.} \end{cases}$$

so $u(x_s, t_f) = u_0(x_n)$. We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm

Are given:

- a set of x_s equispaced nodes and a time interval [t₀, t_f];
- starting values u₀(x_s);
- an hyperbolic PDE*.



- Compute FFT on the starting values $u_0(x_s)$.
- Compute NFFT on the set of $x_n \in \{x_{ne}\}_{ne}$ to rebuild the starting values $u_0(x_n)$ for every $x_n \in \{x_{ne}\}_{ne}$.

* = supposing a(x, t), the transport coefficient, periodic, and f(x, t) = 0.

Forward and Backward Characteristic

- Forward Characteristic: no! $(u(x_n, t_f) = u_0(x_s), x_n \in \{x_{ne}\}_{ne}, + NFFT + IFFT)$
- Backward Characteristic: setting $\tilde{t} = -t$ and $\tilde{x}(\tilde{t}) = x_s$

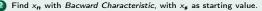
$$x_n \in \{x_{ne}\}_{ne} \text{ solution of } \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -a(x,t) & t \in [-t_f, -t_0] \\ x(-t_f) = x_s, & x_s \in \{x_e\}_e \text{ equispaced.} \end{cases}$$

so $u(x_s, t_f) = u_0(x_n)$. We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm

Are given:

- a set of x_s equispaced nodes and a time interval [t₀, t_f];
- starting values u₀(x_s);
- an hyperbolic PDE*.



Compute FFT on the starting values $u_0(x_s)$.

Compute NFFT on the set of $x_n \in \{x_{ne}\}_{ne}$ to rebuild the starting values $u_0(x_n)$ for every $x_n \in \{x_{ne}\}_{ne}$.

 $\int u_0(x_n)$ is the solution of the hyperbolic PDE on x_s at the final time t_f (i.e. $u(x_s, t_f)$).

Simone Parisotto (id069215)

Example

An hyperbolic PDE with periodic transport coefficient

$\int \frac{\partial u}{\partial t} - \sin(x) \frac{\partial u}{\partial u} = 0$	$x \in [0, 2\pi), \ t \in (0, 1.571]$ $x \in [0, 2\pi) ext{ eq.},$	with	$\int \frac{\mathrm{d}x}{\mathrm{d}x} = \sin(x)$	$t \in (0, 1.571]$
$ \begin{aligned} & U(x,0) = \sin(x), \\ & U(x,0) = \sin(x), \end{aligned} $	$x\in [0,2\pi)$ eq.,		$\int_{x(0)}^{dt} x(0) = x,$	$x\in [0,2\pi)$ eq.

Example

An hyperbolic PDE with periodic transport coefficient

$\int \frac{\partial u}{\partial t} - \sin(x) \frac{\partial u}{\partial u} = 0$	$egin{aligned} &x\in [0,2\pi), \;\; t\in (0,1.571] \ &x\in [0,2\pi) \; ext{eq.}, \end{aligned}$	with	$\int \frac{\mathrm{d}x}{\mathrm{d}x} = \sin(x)$	$t\in(0,1.571]$
$ \begin{aligned} & U(x,0) = \sin(x), \\ & U(x,0) = \sin(x), \end{aligned} $	$x\in [0,2\pi)$ eq.,		$\begin{cases} dt \\ x(0) = x, \end{cases}$	$x\in [0,2\pi)$ eq.

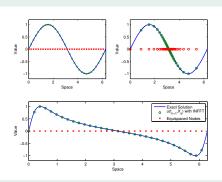
Solution:
$$u(x, t) = \sin\left(2\tan^{-1}\left(e^{t}\tan\frac{x}{2}\right)\right)$$
.

Example

An hyperbolic PDE with periodic transport coefficient

$$\begin{cases} \frac{\partial u}{\partial t} - \sin(x)\frac{\partial u}{\partial x} = 0 \quad x \in [0, 2\pi), \ t \in (0, 1.571] \\ u(x, 0) = \sin(x), \qquad x \in [0, 2\pi) \text{ eq.}, \end{cases} \quad \text{with} \quad \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \sin(x) \quad t \in (0, 1.571] \\ x(0) = x, \qquad x \in [0, 2\pi) \text{ eq.}, \end{cases}$$

Solution:
$$u(x, t) = \sin\left(2\tan^{-1}\left(e^{t}\tan\frac{x}{2}\right)\right)$$
.



Simone Parisotto (id069215) NFFT and Applications

October 15th 2010 20 / 20