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Theory of Fourier Series Trigonometric Polynomials

Trigonometric Polynomials

Introduction: J. Fourier (superposition principle)

Definition (Trigonometric Polynomial of order m and 2π-periodic)

Pm(x) = a0 +
m∑

k=1

(ak cos kx + bk sin kx), with ak , bk ∈ C

An orthogonal basis for 2π-periodic functions

Let B =
{
cos nx , sin nx , n ∈ N

}
with an inner product 〈u, v〉 =

∫ 2π

0
u(x)v(x) dx ;

a norm ||u|| =
√
〈u, u〉.

Proof of orthogonality

〈cosmx, cos nx〉 =


π if m 6= n,
2π if m = n = 0,
0 otherwise;

〈sinmx, sin nx〉 =
{
π if m 6= n,
0 otherwise; 〈cosmx, sin nx〉 = 0.
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Theory of Fourier Series Fourier Series for 2π-periodic functions

Fourier Series for 2π-periodic and l -periodic functions

Trigonometric Fourier Series (T = 2π)

f (x) ≈
a0
2

+
∞∑

k=1

(ak cos kx +bk sin kx), x ∈ [0, 2π)

a0 =
1

π

∫ 2π

0
f (x) dx, ak =

1

π

∫ 2π

0
f (x) cos kx dx,

bk =
1

π

∫ 2π

0
f (x) sin kx dx.

Exponential Fourier Series (T = 2π)

f (x) ≈
+∞∑

k=−∞
cke ikx , x ∈ [0, 2π)

ck =
1

2π

∫ 2π

0
f (x)e−ikx dx.

Some useful identities

eiθ = cos θ + i sin θ;

cos x = (eix + e−ix )/2;

sin x = (eix − e−ix )/2;

ak = ck + c−k ;

bk = i(ck − c−k );

c0 = a0/2;

ck = (ak − ibk )/2;

c−k = (ak + ibk )/2.

Trigonometric and Exponential Fourier Series (T = l = b − a):

Replacing with 2π(x − a)/(b − a), x ∈ [a, b);

Changing the extremes of integration with a and b;

Replacing with 2/(b − a) (Trigonometric FS), with 1/(b − a) (Exponential FS).
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Theory of Fourier Series Convergence results

Convergence Results

Theorem (Some type of Convergences)

Let f (x) a 2π-periodic and C1-piecewise function on the interval [0, 2π). Then, the Fourier Series of f (x) converges

uniformly to f (x) on every compact set which does not contain any discontnuity point;

to the average of right and left limits of f to x∗ if x∗ is a discontinuity point;

Let f (x) a 2π-periodic function on the interval [0, 2π), with
∫ 2π

0
|f (x)|2dx < +∞, then

∫ 2π

0
|f (x)− fN (x)|2dx ≤

∫ 2π

0
|f (x)− PN (x)|2

for any trigonometric polynomial PN of order N (2nd order mean), and

lim
N→+∞

∫ 2π

0
|f (x)− fN (x)|2dx = 0.

Bessel–Parseval Identity

In the same previous hypotheses:
1

π

∫ 2π

0
|f (x)|2dx =

a0

2
+
∞∑
n=1

(
|ak |

2 + |bk |
2
)

= 2
∑
k∈Z
|ck |

2
.
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An approximation for the Fourier Series DFT: Discrete Fourier Trasform

DFT: Discrete Fourier Trasform

Standard Problem

Let f (x) : [a, b)→ C a periodic function. We suppose that f (x) can be written as:

f (x) =
+∞∑

k=−∞

cke
i2πk( x−a

b−a )
, subject to previous convergence results.

For MATLAB: φk(x) =
e i2π(k−1−N/2)(x−a)/(b−a)

√
b − a

, ∀k ∈ Z, orthonormal respect to

〈φj , φk〉 =
∫ b

a
φj (x)φk (x)dx;

〈φj , φk〉N =
b − a

N

N∑
n=1

φj (xn)φk (xn) with −N + 1 ≤ j − k ≤ N − 1.

How to approximate ck and f (xk), with k = 1, . . . ,N

ck =

∫ b

a
f (x)φk(x)dx ≈

√
b − a
N

N∑
n=1

(
f (xn)e iNπyn

)
e−i2π(k−1)yn = f̂k , (DFT).

f (xk) ≈
ˆ̂fk =

N∑
n=1

f̂nφn(xk) =
N

√
b − a

1
N

( N∑
n=1

f̂ne i2π(n−1)yk
)
e−iNπyk (IDFT).
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An approximation for the Fourier Series Error estimate

Error estimate

Truncation error∫ b

a

∣∣∣∣∣f (x)−
N∑

j=1

cjφj (x)

∣∣∣∣∣
2

dx =
∑
k∈J

|ck |2 with J = Z\{1, . . . ,N}.

Estimate for ck (integrating by parts) - Spectral convergence

f (x) ∈ C1 ⇒ ck = O(k−1) f (x) ∈ C2 ⇒ ck = O(k−2)
f (x) ∈ C∞ decays faster

than any negative power of k

Upper-bound (Boyd)

|f (x)− fN(x)| ≤
∑
k∈J

|ck |, where fN =
N∑

k=1

ckφk(x);

|f (x)− FN(x)| ≤ 2
∑
k∈J

|ck |, where FN =
N∑

k=1

f̂kφk(x).
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than any negative power of k

Upper-bound (Boyd)

|f (x)− fN(x)| ≤
∑
k∈J

|ck |, where fN =
N∑

k=1

ckφk(x);

|f (x)− FN(x)| ≤ 2
∑
k∈J

|ck |, where FN =
N∑

k=1

f̂kφk(x).
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An approximation for the Fourier Series Error estimate

Trapezoidal quadrature formula∫ b

a
g(x)dx ≈ b − a

2N

(
g(x1) + 2

N∑
k=2

g(xk) + g(xN+1)
)
=

b − a
N

N∑
k=1

g(xk).

DFT is exact on N points for {φk}N−1
k=−N+1

φk(x) is orthonormal respect to < ·, · >N ;
FN(xk) is interpolant.

Proof of the interpolant property

FN (xk ) =
N∑

n=1
f̂nφn(xk ) =

=
N∑

n=1

((√b − a

N

N∑
m=1

f (xm)eiNπym
)
e−i2π(n−1)ym

)
ei2π(n−1−N/2)(xk−a)/(b−a)

√
b − a

=

=
1

N

N∑
m=1

f (xm)eiNπ(m−1)/Ne−iNπ(k−1)/N
N∑

n=1
e−i2π(n−1)(m−1)/Nei2π(n−1)(k−1)/N =

=
1

N

N∑
m=1

f (xm)ei (m−k)π
N∑

n=1
ei2π(n−1)(k−m)/N =

1

N
f (xk )N = f (xk ).
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Equispaced MFT and FFT Equispaced Matrix Fourier Transform

Equispaced Matrix Fourier Transform

Given N equispaced sampling nodes and M equispaced evaluation points, how to
implement DFT and IDFT in Matlab? MFT or FFT.

1. Matrix Fourier Transform (MFT) and Inverse (IMFT) with M = N

Let (F )jk = e−i2π(j−1)yk and yk = (n − 1)/N, n = 1, . . . ,N + 1:
√

b − a
N

· F [f (x1)e iNπy1 , . . . , f (xN)e iNπyN ]T is the MFT;

N√
b − a

(FH [f̂1, . . . , f̂N ]
N

)
◦ [e−iπNy1 , . . . , e−iπNyN ] is the IMFT.

1. Matrix Fourier Transform (MFT) and Inverse (IMFT) with M 6= N

M > N: ˆ̂fk =
N∑

n=1

f̂nφn(xk), with k = 1, . . . ,M;

M < N: there is no difference with the case discussed above.
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Equispaced MFT and FFT Equispaced Fast Fourier Transform

Equispaced Fast Fourier Transform

(1965) FFT: Cooley (IBM), Tuckey (Princeton)

Some key concepts:

N = N1 + N2, (N1 = N2 with N power of 2);

f̂k =

N/2−1∑
m=0

f (x2m)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ek: DFT of even−indexed part of ym

+e−i2π 1
N k

N/2−1∑
m=0

f (x2m+1)e
−i2π m

N/2 k

︸ ︷︷ ︸
Ok: DFT of odd−indexed part of ym

they are two DFTs of length N/2, so for the periodicity properties of DFT we have

Ek+N/2 = Ek ,

Ok+N/2 = Ok ;

twiddle factor: e−2πi (k+N/2)
N = e−πie−2πi k

N = −e−2πi k
N ;

f̂k =


Ek + e−

2πi
N kOk if k < N/2

Ek−N/2 − e−
2πi
N (k−N/2)Ok−N/2 if k ≥ N/2.
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Equispaced MFT and FFT Equispaced Fast Fourier Transform

Fastest Fourier Transform in the West: a FFT library for MATLAB
written in C (Frigo - Johnson);

fft, ifft, fftshift, ifftshift;

distributed "wisdom" (size, type of transformation, etc...).

2. Fast Fourier Transform (FFT) and Inverse (IFFT) with M = N
√

b − a
N

· fftshift
(
fft
(
[f (x1), . . . , f (xn)]

T
))

is the FFT;

N√
b − a

· ifft
(
fftshift

(
[f̂1, . . . , f̂N ]

))
is the IFFT.

2. Fast Fourier Transform (FFT) and Inverse (IFFT) with M 6= N

M > N: f̂ ∗ = [ 0, . . . , 0,︸ ︷︷ ︸
(M−N)/2 items

f̂ , 0, . . . , 0︸ ︷︷ ︸
(M−N)/2 items

];

M < N: f̂ ∗ = [ f̂1, . . . , f̂M−N
2
,︸ ︷︷ ︸

items to be deleted

f̂M−N
2 +1, . . . , f̂M+N

2
, f̂M+N

2 +1, . . . , f̂N︸ ︷︷ ︸
items to be deleted

]. (!)
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Equispaced MFT and FFT Computational cost and comparison between MFT and FFT

Computational cost and comparison between MFT and FFT

Computational cost (M = N equispaced nodes)

From space domain to frequency domain or backward the computational cost is

MFT: O(N2); FFT: O(N log2 N).

Comparison MFT–FFT, test f(x) = sin(2*pi*(x-a)/(b-a)) + 2*cos(4*2*pi*(x-a)/(b-a))
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Nonequispaced DFT and FFT Nonequispaced DFT

Nonequispaced DFT

What if we have M nonequispaced evaluation nodes?

NDFT or NFFT!

Nonequispaced Discrete Fourier Transform (NDFT) and Inverse (INDFT) by Kunis

f̂ (x) =
N/2−1∑

k=−N/2

f (x)e i2πkx (NDFT);

ˆ̂fk =

N/2−1∑
k=−N/2

f̂ke−i2πky (INDFT).

with x , y ∈ [− 1
2 ,

1
2 ). This works for M = N and M 6= N.

Differences between Kunis notations and the ours: how to fix?

In Kunis: x ∈ [− 1
2 ,

1
2 ) but we consider y ∈ [0, 1).

DFT, NDFT (and Inverses) presents a “minus” factor in the exponential.

How to fix this issue?
x ∈ [a, b)→ y = −

(
(x − a)/(b − a)− 0.5

)
; y ∈ [− 1

2 ,
1
2 ]→ x = −(b − a)(y − 0.5) + a.
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2 ,

1
2 ) but we consider y ∈ [0, 1).

DFT, NDFT (and Inverses) presents a “minus” factor in the exponential.

How to fix this issue?
x ∈ [a, b)→ y = −

(
(x − a)/(b − a)− 0.5

)
; y ∈ [− 1

2 ,
1
2 ]→ x = −(b − a)(y − 0.5) + a.
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Nonequispaced FFT: alghoritm and error estimation
We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

nodes xj = [− 1
2 ,

1
2 ) with j = 0 . . . ,N;

frequencies IN = [−N
2 ,

N
2 );

an oversampling factor σ > 1, setting n = σN.

IDEA: f (x) =
∑

k∈IN

f̂ke−2πikx ≈ s1(x) =
∑
l∈In

gl ϕ̃
(
x −

l

n

)
, with ϕ̃(x) =

∑
r∈Z

ϕ(x + r), with f̂k given.

1. Cut-off in frequency domain

s1(x) =
∑
k∈Z

ĝk ϕ̂ke−2πikx =
∑

k∈In

ĝk ϕ̂ke−2πikx +
∑

r∈Zr{0}

∑
k∈In

ĝk ϕ̂k+nr e
−2πi (k+nr)x ,

ĝk =
∑
l∈In

gl e
2πik l

n

ĝk =

{
f̂k/ϕ̂k if k ∈ IN
0 if k ∈ In r IN

FFT: gl =
1

n

∑
k∈IN

ĝke−2πik l
n with l ∈ In,

ϕ̂k =

∫ 1/2

−1/2
ϕ̃(x)e2πikxdx, k ∈ Z.

if ϕ̂k are small enough for k ∈ Z r In
and ϕ̂k 6= 0 for k ∈ IN .

aliasing error

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 14 / 20



Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

Nonequispaced FFT: alghoritm and error estimation
We consider NFFT from frequency domain to space domain on nonequispaced nodes (not forward).

What we need:

nodes xj = [− 1
2 ,

1
2 ) with j = 0 . . . ,N;

frequencies IN = [−N
2 ,

N
2 );

an oversampling factor σ > 1, setting n = σN.

IDEA: f (x) =
∑

k∈IN

f̂ke−2πikx ≈ s1(x) =
∑
l∈In

gl ϕ̃
(
x −

l

n

)
, with ϕ̃(x) =

∑
r∈Z

ϕ(x + r), with f̂k given.

1. Cut-off in frequency domain

s1(x) =
∑
k∈Z
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ĝk =

{
f̂k/ϕ̂k if k ∈ IN
0 if k ∈ In r IN

FFT: gl =
1

n

∑
k∈IN
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Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n ](x), m � N.

f (xj ) ≈ s1(xj ) ≈ s(xj ) =
∑

l∈In,m(xj )

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj ) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2 ) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n ), with l ∈ In,m(xj ).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj ) =
∑

l∈In,m(xj )

gl ψ̃
(
xj −

l
n

)
.

The values s(xj ) approximate f (xj ).
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3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .
4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj ) =
∑

l∈In,m(xj )

gl ψ̃
(
xj −

l
n

)
.

The values s(xj ) approximate f (xj ).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 15 / 20



Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

2. Cut-off in time/space domain

If ϕ is well localized in time domain ψ(x) = ϕ(x)χ[−m
n ,

m
n ](x), m � N.

f (xj ) ≈ s1(xj ) ≈ s(xj ) =
∑

l∈In,m(xj )

gl ψ̃
(
xj −

l
n

)
, with ψ̃ =

∑
r∈Z

ψ(x + r)

where In,m(xj ) = {l ∈ In : nxj − m ≤ l ≤ nxj + m}.

It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2 ) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .

2 Precompute ψ(xj − l
n ), with l ∈ In,m(xj ).
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It contains at most 2m + 1 nonzero summands;

Truncation error.

The alghoritm

Given N ∈ N, σ > 1, n = σN, xj ∈ [− 1
2 ,

1
2 ) and f̂k ∈ C:

1 Precompute ϕ̂k , with k ∈ IN .
2 Precompute ψ(xj − l

n ), with l ∈ In,m(xj ).

3 Generate ĝk = f̂k/ϕ̂k , with k ∈ IN .

4 Compute gl using a d-variate FFT, in our case d = 1 (FFTW library is used).

5 Set s(xj ) =
∑

l∈In,m(xj )

gl ψ̃
(
xj −

l
n

)
.

The values s(xj ) approximate f (xj ).
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Nonequispaced DFT and FFT Nonequispaced FFT: alghoritm and error estimation

Error estimate

E(xj ) = |f (xj )− s(xj )| ≤ Ea(xj ) + Et(xj ) = C(σ,m)||f̂ ||1,

Default window function: Dilated Keiser-Bessel functions

ϕ(x) =
1
π


sinh(b

√
m2 − n2x2)

√
m2 − n2x2

for |x | ≤
m
n
, with b = π

(
2−

1
α

)
,

sinh(b
√

n2x2 −m2)
√

n2x2 −m2
otherwise,

ϕ̂k =
1
n


I0

(
m

√
b2 −

(2πk
n

)2)
for k = −n

(
1− 1

2σ

)
, . . . , n

(
1− 1

2σ

)
,

0 otherwise,

with C(σ,m) = 4π(
√

m + m) 4
√

1− 1
σ

e−2πm
√
1− 1

σ .
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Nonequispaced DFT and FFT Comparison between MFT, FFT and NFFT

Comparison between MFT, FFT and NFFT

Computational Cost

NDFT: O(NM); NFFT: O((σN)d log(σN) + mdM).

Comparison between MFT, FFT and NFFT: from frequency domain to space domain
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NFFT in solving hyperbolic PDE A standard hyperbolic PDE

A standard hyperbolic PDE

A simple hyperbolic PDE
∂u
∂t

+ a
∂u
∂x

= 0 x ∈ R, a 6= 0, t > 0;

u(x , 0) = u0(x) x ∈ R.

Solution: u(x , t) = u0(x − at), a wave travelling at at the speed a.

Characteristics curves x(t) on the plane (x , t)

x(t) solution of ODE


dx
dt

= a t > 0

x(0) = x0, x0 ∈ R.

The solution u(x , t) is constant along them because

d
dt

u(x , t) =
dt
dt
∂u
∂t

(x , t) +
dx
dt

∂u
∂x

(x , t) =
∂u
∂t

(x , t) + a
∂u
∂x

(x , t) = 0.

Given a source f (x, t) instead of 0 and a = a(x, t), the result is the same (changing the colored text).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 18 / 20



NFFT in solving hyperbolic PDE A standard hyperbolic PDE

A standard hyperbolic PDE

A simple hyperbolic PDE
∂u
∂t

+ a
∂u
∂x

= 0 x ∈ R, a 6= 0, t > 0;

u(x , 0) = u0(x) x ∈ R.

Solution: u(x , t) = u0(x − at), a wave travelling at at the speed a.

Characteristics curves x(t) on the plane (x , t)

x(t) solution of ODE


dx
dt

= a t > 0

x(0) = x0, x0 ∈ R.

The solution u(x , t) is constant along them because

d
dt

u(x , t) =
dt
dt
∂u
∂t

(x , t) +
dx
dt

∂u
∂x

(x , t) =
∂u
∂t

(x , t) + a
∂u
∂x

(x , t) = 0.

Given a source f (x, t) instead of 0 and a = a(x, t), the result is the same (changing the colored text).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 18 / 20



NFFT in solving hyperbolic PDE A standard hyperbolic PDE

A standard hyperbolic PDE

A simple hyperbolic PDE
∂u
∂t

+ a
∂u
∂x

= 0 x ∈ R, a 6= 0, t > 0;

u(x , 0) = u0(x) x ∈ R.

Solution: u(x , t) = u0(x − at), a wave travelling at at the speed a.

Characteristics curves x(t) on the plane (x , t)

x(t) solution of ODE


dx
dt

= a t > 0

x(0) = x0, x0 ∈ R.

The solution u(x , t) is constant along them because

d
dt

u(x , t) =
dt
dt
∂u
∂t

(x , t) +
dx
dt

∂u
∂x

(x , t) =
∂u
∂t

(x , t) + a
∂u
∂x

(x , t) = 0.

Given a source f (x, t) instead of 0 and a = a(x, t), the result is the same (changing the colored text).

Simone Parisotto (id069215) NFFT and Applications October 15th 2010 18 / 20



NFFT in solving hyperbolic PDE Solution of an hyperbolic PDE* on equispaced nodes

Solution of an hyperbolic PDE* on equispaced nodes

* = supposing a(x, t), the transport coefficient, periodic, and f (x, t) = 0.

Forward and Backward Characteristic

Forward Characteristic: no! (u(xn, tf ) = u0(xs), xn ∈ {xne}ne , + NFFT + IFFT)

Backward Characteristic: setting t̃ = −t and x̃(t̃) = xs

xn ∈ {xne}ne solution of


dx
dt

= −a(x , t) t ∈ [−tf ,−t0]

x(−tf ) = xs , xs ∈ {xe}e equispaced.

so u(xs , tf ) = u0(xn). We can solve the ODE with rk45 (adaptative) in MATLAB.

The alghoritm
1 Are given:

a set of xs equispaced nodes and a time interval [t0, tf ];
starting values u0(xs );
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs ).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf )).
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a set of xs equispaced nodes and a time interval [t0, tf ];
starting values u0(xs );
an hyperbolic PDE*.

2 Find xn with Bacward Characteristic, with xs as starting value.

3 Compute FFT on the starting values u0(xs ).

4 Compute NFFT on the set of xn ∈ {xne}ne to rebuild the starting values u0(xn) for every xn ∈ {xne}ne .

5 u0(xn) is the solution of the hyperbolic PDE on xs at the final time tf (i.e. u(xs , tf )).
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NFFT in solving hyperbolic PDE Example

Example

An hyperbolic PDE with periodic transport coefficient
∂u

∂t
− sin(x)

∂u

∂x
= 0 x ∈ [0, 2π), t ∈ (0, 1.571]

u(x, 0) = sin(x), x ∈ [0, 2π) eq.,
with


dx

dt
= sin(x) t ∈ (0, 1.571]

x(0) = x, x ∈ [0, 2π) eq.

Solution: u(x, t) = sin
(
2 tan−1

(
et tan x

2

))
.
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Equispaced Nodes
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