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FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI

Corso di Laurea Triennale in Matematica Applicata

Tesi di Laurea

Nonequispaced Fast Fourier Transform
and Applications

Candidato:

Simone Parisotto
Matricola vr069215

Relatore:

Dott. Marco Caliari

Anno Accademico 2009–2010





“Nobody said it was easy
No one ever said it would be this hard.”

The Scientist - Coldplay

This thesis is dedicated to my parents, Daniele and Nadia, who supported me
in every moment of joy or sadness. I cannot forget how much love they reversed
over me. Doing always my best it is the only way I know to refund them for their
love.

A special thanksgiving to my advisor, Dott. Marco Caliari, for his patience and
assistance during the works of this thesis and also for his amazing lectures. Thanks
for giving me the opportunity to going deeper into the world of Discrete Fourier
Transform: it has been a great pleasure and I enjoyed it very much.

A necessary mention to my friends for their careful support over these years:
Andrea Corrà, Diego Carbognin, Domenica Romaniello, Elena Zogno, Enrico Costan-
tini, Enrico Scapin, Federica Martelli, Francesca Begali, Francesca Girella, Francesco
Tosi, Gianmarco Lodola, Giulia Caldana, Ilaria Zampieri, Lucia Caldana, Manuel Berga-
masco, Marco De Donatis, Marco Ferrari, Matteo Montaperto and Vera Di Stefano.

I am also very grateful to Elena Veronesi and Sara Buscarini, who introduced me
to the fascinating world of mathematics. Also, thanks to Benoit Mandelbrot, whose
books inspired me to try to follow the math’s way.

This work is dedicated also to my dear second family of www.coldplayzone.it, the
website I set up in 2006. I am proud to work with Gabriele Bigatti, Patrizio Ne-
gro, Federico Drago, Elena Curti and Denise Tonolo and share with them endless
queues along uncountable and unforgettable gigs. Without them it is a waste of time.

And, in the end, thanks to the special friends of Daylight Band, the best
Coldplay Tribute Band in the world, from Padua.

Sorry if I am forgetting someone but the rows remaining are few: I am keeping
a lot of other people in my heart.

Viva la Vida (in Technicolor, obviously).

Simone Parisotto





Introduction

This thesis concerns the Discrete Fourier Transform (DFT) and its implementation and
approximation in MATLAB. Given f : [a, b)→ C a l-periodic function with l = b− a, the
Discrete Fourier Transform of f , in its exponential formulation, is

+∞∑
k=−∞

cke
i2πk x−a

b−a (1)

with the Fourier coefficients

ck =
1

b− a

∫ b

a

f(x)e−i2πk
x−a
b−a dx, ∀k ∈ Z. (2)

In order to compute the coefficients ck, the integral (2) has to be approximated: recalling the
composite trapezoidal quadrature formula for periodic functions∫ b

a

g(x)dx ≈ b− a
N

N∑
k=1

g(xk), xk = a+ (k − 1)
b− a
N

, (3)

then the approximation of ck, through (3), is called f̂k. Now we are able to introduce the
truncated and approximated version of formula (1):

FN(x) =
N∑
k=1

f̂ke
i2πk x−a

b−a .

In order to evaluate the expression above at a set of N nodes we can use:
• the Fast Fourier Transform (FFT), cost O(N logN), if the nodes are equispaced;

• the Matrix Fourier Transform (MFT), cost O(N2), or the recent Nonequispaced Fast
Fourier Transform (NFFT), cost O(N logN + mN), m � N , if the nodes are not
equispaced.

We will call the algorithms by their acronyms, referring to the transformation from the
space domain to the frequency domain {f(xk)}k → {f̂k}k, or adding an I (Inverse) to their
acronyms, referring to the transformation from the frequency domain to the space domain.
The aims of this thesis are:
• showing that FFT is more accurate and less expensive than MFT if the number of

coefficients is larger than a certain number;

• showing that NFFT is less expensive than MFT, only slightly less accurate than MFT
and FFT and it can be used for a set of nonequispaced nodes;

• showing how NFFT can be used in solving hyperbolic Partial Differential Equation
with a periodic transport coefficient.

All scripts used in this thesis are available in the enclosed CD.
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Chapter 1

Theory of Fourier Series

A lot of physical phenomena, such as acoustical or electromagnetical ones, can be represented
with a wave floating in the space. These waves obey to the superposition principle: they
interact adding their effects in every point of the space. From this idea, every signal (and every
function), under suitable conditions, can be represented with a superposition of elementary
waves, each one with a fixed frequency. The frequency is the number of occurrences of a
repeating event per unit time and hertz is its SI unit. Fourier series were introduced by
Joseph Fourier (1768–1830) for the purpose of solving the heat equation in a metal plate.
The heat equation is a partial differential equation. Prior to Fourier’s work, there was no
known solution to the heat equation in a general situation, although particular solutions were
known if the heat source behaved in a simple way, in particular, if the heat source was a sine
or cosine wave. These simple solutions are now sometimes called eigensolutions. Fourier’s
idea was to model a complicated heat source as a superposition (or linear combination) of
simple sine and cosine waves, and to write the solution as a superposition of the corresponding
eigensolutions. This superposition or linear combination is called the Fourier series.

1.1 Trigonometric Polynomials

Definition 1.1. A trigonometric polynomial Pm(x) of order m is a 2π-periodic function, in
other words f(x) = f(x+ 2kπ), ∀x ∈ R ∀k ∈ Z, so that

Pm(x) = a0 +
m∑
k=1

(ak cos kx+ bk sin kx)

with ak, bk ∈ C called coefficients of Pm.

The 2π-periodic function space can be equipped with

- an inner product: 〈u, v〉 =
∫ 2π

0

u(x)v(x)dx

- a norm: ||u|| =
√
〈u, u〉 =

(∫ 2π

0

u(x)u(x)dx
) 1

2
.

The set B =
{
sinnx, cosnx, n ∈ N

}
is an othogonal basis for the space of 2π-periodic
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funcions. The following results, called orthogonality relations, are true:∫ 2π

0

cosmx cosnxdx =

{
π if m = n 6= 0 (2π when m = n = 0)
0 if m 6= 0∫ 2π

0

sinmx sinnxdx =

{
π if m = n 6= 0

0 otherwise∫ 2π

0

cosmx sinnxdx = 0.

1.2 Fourier Series for 2π-periodic functions

Our aim now is to represent every periodic function f : [0, 2π)→ C as a linear combination
of sine and cosine:

f∞(x) =
a0
2

+
∞∑
k=1

(ak cos kx+ bk sin kx) (1.1)

Formula (1.1) is called Trigonometric Fourier Series of f . The coefficients are:

a0 =
1

π

∫ 2π

0

f(x)dx, ak =
1

π

∫ 2π

0

f(x) cos kxdx, bk =
1

π

∫ 2π

0

f(x) sin kxdx.

There is another notation for a Fourier Series : from Euler’s formula eiθ = cos θ + i sin θ, we
can write the Exponential Fourier Series as:

+∞∑
k=−∞

cke
ikx, with coefficients ck =

1

2π

∫ 2π

0

f(x)e−ikxdx.

The identities:

cosx ≡ eix + e−ix

2
and sinx ≡ eix − e−ix

2i
(1.2)

show that Trigonometric Fourier Series (1.1) and Exponential Fourier Series (1.2) are
equivalent because, for k ≥ 1, we have:

ak = ck + c−k, bk = i(ck − c−k), and c0 =
a0
2
, ck =

ak − ibk
2

, c−k =
ak + ibk

2
.

If we truncate the series at a fixed index N , then fN(x) is called truncated Fourier Series of
order N .

1.3 Convergence Results

In this section we briefly report (without proofs) some convergence results to show how and
under which conditions the Fourier Series of f can approximate f .

Theorem 1.1 (of uniform convergence). Let f(x) a 2π-periodic and C1-piecewise function
on the interval [0, 2π). Then, the Fourier Series of f(x) converges uniformly to f(x) on every
compact set which does not contain any discontnuity point.
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Remark 1.1. Under the same hypothesis of theorem (1.1), if x∗ is a discontinuity point for
f(x), then the Fourier Series of f(x∗) converges to the average of right and left limits of f to
x∗.

Theorem 1.2 (of convergence in 2nd order mean). Let f(x) a 2π-periodic function on

the interval [0, 2π), with
∫ 2π

0

|f(x)|2dx < +∞, then

∫ 2π

0

|f(x)− fN(x)|2dx ≤
∫ 2π

0

|f(x)− PN(x)|2dx

for any trigonometric polynomial PN of order N and

lim
N→+∞

∫ 2π

0

|f(x)− fN(x)|2dx = 0.

Moreover, the following result is true and it’s called Bessel–Parseval Identity:

1

π

∫ 2π

0

|f(x)|2dx =
|a0|2

2
+
∞∑
n=1

(
|ak|2 + |bk|2

)
= 2

∑
k∈Z

|ck|2. (1.3)

1.4 Fourier Series for l-periodic functions
It’s possible to use the Fourier Series of l-periodic functions (not only 2π-periodic ones). If
f : [a, b)→ R is l-periodic in [a, b), with l = b− a,

• its Trigonometric Fourier Series is:

a0
2

+
∞∑
k=1

ak cos 2πk
(x− a
b− a

)
+ bk sin 2πk

(x− a
b− a

)
(1.4)

with

ak =
2

b− a

∫ b

a

f(x) cos 2πk
(x− a
b− a

)
dx, bk =

2

b− a

∫ b

a

f(x) sin 2πk
(x− a
b− a

)
dx.

• its Exponential Fourier Series is:

+∞∑
k=−∞

cke
i2πk x−a

b−a (1.5)

with

ck =
1

b− a

∫ b

a

f(x)e−i2πk
x−a
b−a dx, ∀k ∈ Z.

Obviously, every convergence result is true in the new scaled interval [a, b).





Chapter 2

An approximation for the Fourier Series

Let f : [a, b)→ C a periodic function. We suppose that f(x) can be written as

f(x) =
+∞∑

k=−∞

cke
i2πk(x−a

b−a ), (2.1)

in the sense of Theorem (1.1). We want to implement (2.1) in MATLAB. Since MATLAB
can’t manage negative or null indexes, we have to translate the basis functions to new ones.

2.1 A good choice of basis functions
Let [a, b) ∈ R an interval, N a fixed even natural number and l = b− a. We can consider the
following basis functions:

φk(x) =
ei2π(k−1−N/2)(x−a)/(b−a)√

b− a
, ∀k ∈ Z.

Now we are ready to show the orthonormal relation of the set of {φk(x)}k:∫ b

a

φj(x)φk(x)dx = δjk (2.2)

with δjk Kronecher’s delta. This is true because

φj(x)φk(x) =


1

b− a
if j = k

ei2π(j−k)(x−a)/(b−a)

b− a
otherwise

(2.3)

and

∫ b

a

φj(x)φk(x)dx =



∫ b

a

1

b− a
dx =

1

b− a

∫ b

a

dx =
1

b− a
(b− a) = 1 if j = k

∫ b

a

ei2π(j−k)(x−a)/(b−a)

b− a
=

∫ 1

0

ei2π(j−k)y

b− a
(b− a)dy = 0 otherwise

because the integral of sin(x) and cos(x) functions over a multiple interval of their period is
zero.
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Lemma 2.1. The following relation is true and it’s called discrete inner product’s orthogo-
nality relation. If we define

〈φj, φk〉N =
b− a
N

N∑
n=1

φj(xn)φk(xn) =
b− a
N

N∑
n=1

ei2π(n−1)(j−k)/N ,

then

〈φj, φk〉N = δjk, with −N + 1 ≤ j − k ≤ N − 1 and δjk Knonecher’s delta. (2.4)

Proof. From (2.3) we have:

〈φj, φk〉N =



b− a
N

N∑
n=1

1

b− a
=
b− a
N

N

b− a
= 1 if j = k

b− a
N

N−1∑
n=0

(ei2π(j−k)/N)n =
1− ei2π(j−k)

1− ei2π(j−k)/N
=

1− cos(2π(j − k))
1− ei2π(j−k)/N

= 0 if j 6= k

so (2.4) is shown becuase cos(2π(j− k)) is 1 for every j such as −N +1 ≤ j− k ≤ N − 1.

2.2 DFT: Discrete Fourier Transform
We recall that, due to the orthonormality of {φk}k,

f(x) =
+∞∑

k=−∞

ckφk(x), ck =

∫ b

a

f(x)φk(x)dx. (2.5)

How to approximate ck? Given a set of N + 1 equispaced nodes, xn on the interval [a, b],
with a simple linear transformation yn = (xn − a)/(b − a) we obtain the new nodes yn =
(n − 1)/N ∈ [0, 1]. Recalling the composite trapezoidal quadrature formula for a periodic
function g ∫ b

a

g(x)dx ≈ b− a
2N

(
g(x1) + 2

N∑
k=2

g(xk) + g(xN+1)
)
=
b− a
N

N∑
k=1

g(xk), (2.6)

we can approximate the coefficients in (2.5) obtaining:

ck =

∫ b

a

f(x)φk(x)dx =

∫ b

a

f(x)
e−i2π(k−1−N/2)(x−a)/(b−a)√

b− a
dx =

=
√
b− a

∫ 1

0

f((b− a)y + a)e−i2π(k−1)yeiNπydy ≈

≈
√
b− a
N

N∑
n=1

(
f(xn)e

iNπyn
)
e−i2π(k−1)yn = f̂k.

(2.7)

The transformation [f(x1), . . . , f(xN )]
T → [f̂1, . . . , f̂N ]

T is called Discrete Fourier Transform
(DFT) of f and [f̂1, . . . , f̂N ]

T are called Discrete Fourier coefficients of the function f . On the
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other hand, if f̂k are given complex values, with k = 1, . . . , N , we can consider the periodic
function

FN(x) =
N∑
n=1

f̂nφn(x). (2.8)

Evaluation of FN(x) at the nodes xk, with k = 1, . . . , N , is

ˆ̂
fk =

N∑
n=1

f̂nφn(xk) =
N∑
n=1

f̂n
ei2π(n−1−N/2)(xk−a)/(b−a)√

b− a
=

=
N√
b− a

1

N

( N∑
n=1

f̂ne
i2π(n−1)yk

)
e−iNπyk .

(2.9)

The transformation [f̂1, . . . , f̂N ]
T → [

ˆ̂
f1, . . . ,

ˆ̂
fN ]

T is called Inverse Discrete Fourier Transform
(IDFT).

2.3 Error estimate
First, defining J = Z\{1, 2, . . . , N}, we can investigate the truncation error:∫ b

a

∣∣∣∣∣f(x)−
N∑
j=1

cjφj(x)

∣∣∣∣∣
2

dx =

∫ b

a

∣∣∣∣∣∑
j∈J

cjφj(x)

∣∣∣∣∣
2

dx =

=

∫ b

a

(∑
j∈J

cjφj(x)

)(∑
k∈J

ckφk(x)

)
dx =

∑
k∈J

|ck|2.

We can now estimate ck. For a C1 function we have:

ck =

∫ b

a

f(x)φk(x)dx =

= − b− a
i2π(k − 1−N/2)

(
f(b)− f(a)√

b− a

)
+

b− a
i2π(k − 1−N/2)

∫ b

a

f ′(x)φk(x)dx = O(k−1).

If f ′(a) = f ′(b) and f ′(x) ∈ C1, then integrating by parts, we obtain ck(x) = O(k−2) and so
on. Therefore, if f(x) is an infinitely differentiable and periodic function (i.e. all the derivates
are periodic), then ck decays faster than every negative power of k. This property is called
exponential or spectral convergence. Moreover, we have the following theorem.

Theorem 2.1. Let fN(x) denote the truncation of the exact Fourier series. Then,

|f(x)− fN(x)| ≤
∑
k∈J

|ck|, (2.10)

that is to say, the error is bounded by the sum of the absolute value of all neglected coefficients.
Let now FN defined as in (2.8). Then

|f(x)− FN(x)| ≤ 2
∑
k∈J

|ck| (2.11)

that is to say, the error is bounded by twice the sum of the absolute values of all the neglected
coefficients. Comparing (2.10) and (2.11) we conclude: the penalty for using quadrature to
approximate coefficients is at worst a factor of two (see [2]).
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Since {φk}k is orthonormal also for the discrete inner product for 1 ≤ k ≤ N , then by
Lemma (2.1) the trigonometric polynomial (2.8), which is the truncated approximated Fourier
Series, is an interpolation Fourier polynomial of f on the set xj, for all j used. In fact:

FN(xk) =
N∑
n=1

f̂nφn(xk) =

=
N∑
n=1

((√b− a
N

N∑
m=1

f(xm)e
iNπym

)
e−i2π(n−1)ym

)
ei2π(n−1−N/2)(x−a)/(b−a)√

b− a
=

=
1

N

N∑
m=1

f(xm)e
iNπ(m−1)/Ne−iNπ(k−1)/N

N∑
n=1

e−i2π(n−1)(m−1)/Nei2π(n−1)(k−1)/N =

=
1

N

N∑
m=1

f(xm)e
i(m−k)π

N∑
n=1

ei2π(n−1)(k−m)/N =
1

N
f(xk)N = f(xk).

This result means that trapezoidal quadrature’s formula on N points is exact for the basis
functions {φk}N−1k=−N+1.



Chapter 3

Equispaced MFT and FFT

From now on, we speak of Fourier coefficients instead of Discrete Fourier coefficients {f̂k}k,
while { ˆ̂fk}k stands for the values found by the transformation from the frequency domain to
the space domain Inverse Discrete Fourier Transform.

Given M equispaced evaluation points and N complex values, the Matrix Fourier Trans-
form (MFT) and the Fast Fourier Transform (FFT) are two ways to implement (2.7) in
MATLAB. Obviously, also the inverse operation, Inverse Discrete Fourier Transform (IDFT),
can be implemented through two ways: the Inverse Matrix Fourier Transform (IMFT) and
the Inverse Fast Fourier Transform (IFFT). For hystorical reasons it is easy to misunderstand
which transform we are referring to. In general we will talk about MFT and FFT and where
is possible we will try to be more accurate. However the context will clarify our pourposes.

Our goal is to show that FFT is computationally more efficient than MFT, from a certain
number of Fourier coefficients. Moreover, we will show how to evaluate the MFT and the
FFT on M equispaced evaluation points with M 6= N .

3.1 M equispaced evaluation points, with M = N

This is the case with N equispaced sampling points and N complex values. To test this
implementations, run the MATLAB’s scripts ./matrixFT/simple_test_rebuilding.m (for
MFT) and ./fastFT/simple_test_rebuilding.m (for FFT).

3.1.1 MFT: Matrix Fourier Transform

In MFT only matrix-vector multiplications are used, reported in (2.7) and (2.9). MFT is a
straightforward implementation of (2.7) and (2.9) using a matrix, called F , defined as

(F )jk = e−i2π(j−1)yk , with yk = (n− 1)/N, n = 1, . . . , N + 1,

which lets us to compute the matrix-vector multiplication version of the DFT and the IDFT:

• MFT: from the space domain to the frequency domain. The coefficients [f̂1, . . . , f̂N ]T
are: √

b− a
N

· F [f(x1)eiNπy1 , . . . , f(xN)eiNπyN ]T (3.1)
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• IMFT: from the frequency domain to the space domain to space domain. The values
[
ˆ̂
f1, . . . ,

ˆ̂
fN ]

T are:

N√
b− a

(FH [f̂1, . . . , f̂N ]

N

)
◦ [e−iπNy1 , . . . , e−iπNyN ], (3.2)

where “◦” is the Hadamar product: (A ◦B)i,j = Ai,j ·Bi,j and with “H” the Hermitian
transpose.

3.1.2 FFT: Fast Fourer Transform

FFT is the most efficient algorithm to compute Fourier coefficients in one dimension. Invented
by Gauss in 1805, to study 2 Pallas and 3 Juno’s trajectories, this algorithm became famous
only in 1965 when J. W. Cooley of IBM and John W. Tukey of University of Princeton
published a paper reinventing the algorithm and describing how to implement it on a PC. The
basic idea of this algorithm is not to compute the N necessary coefficients, but to compute
separately N1 and N2 coefficients, with N = N1 + N2. If we choose N as a power of 2, it
is possible to set N1 = N2: this is a great advantage for the computational cost because
every number can be expressed as a power of 2’s summation. In general, given a sequence of
{f(xn)}n, it’s possible to decompose (1.5) into two parts, one even and one odd respectively:

f̂k =

N/2−1∑
n=0

f(x2n)e
−i2π 2n

N
k +

N/2−1∑
n=0

f(x2n+1)e
−i2π 2n+1

N
k.

Recalling yn = (n− 1)/N , denoting the DFT of the even-indexed inputs x2n by Ek and the
DFT of the odd-indexed inputs x2n+1 by Ok and collecting common factor e−i2π

1
N
k, called

twiddle factor, in the second summation, we obtain:

f̂k =

N/2−1∑
n=0

f(x2n)e
−i2π n

N/2
k

︸ ︷︷ ︸
DFT of even−indexed part of {yn}n

+e−i2π
1
N
k

N/2−1∑
n=0

f(x2n+1)e
−i2π n

N/2
k

︸ ︷︷ ︸
DFT of odd−indexed part of {yn}n

= Ek + e−i2π
1
N
kOk.

These smaller DFTs have a length of N/2, so we need compute only N/2 outputs: thanks to
the periodicity properties of the DFT, the outputs for N/2 ≤ k < N from a DFT of length
N/2 are identical to the outputs for 0 ≤ k < N/2. That is,

Ek+N/2 = Ek

Ok+N/2 = Ok.

The twiddle factor obeys the relation

e−2πi
(k+N/2)

N = e−πie−2πi
k
N = −e−2πi

k
N ,

flipping the sign of the Ok+N/2 terms. Thus, the whole DFT can be calculated as follows:

f̂k =


Ek + e−

2πi
N
kOk if k < N/2

Ek−N/2 − e−
2πi
N

(k−N/2)Ok−N/2 if k ≥ N/2.
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This result, expressing the DFT of length N recursively in terms of two DFTs of size N/2, is
the core of the Fast Fourier transform. The algorithm gains its speed by re-using the results
of intermediate computations to compute multiple DFT outputs. Note that final outputs
are obtained by a combination of Ek and Oke

−2πik/N . The overall cost of this procedure is
O(N logN) instead of O(N2) of the direct MFT approach. This algorithm can be extended
to arbitrary numbers N .

Fastest Fourier Transform in the West: a FFT library for MATLAB

In MATLAB, the FFT is implemented in a library written in C, called FFTW (see [3]), designed
to compute the DFT in one or more dimensions, of arbitrary input size, real or complex,
data sets. The acronym stands for Fastest Fourier Transform in the West, showing that the
developers were quite optimistic on the results of their work. However, it works well and it’s
superior to other public available software. This library provide us some useful MATLAB’s
commands as fft, ifft, fftshift, ifftshift. The core of such good performance is not a
special algorithm but the composition of different FFT algorithms and approaches, chosen at
runtime on the basis of the type and the size of the problem. The library can also “remember”
these choices, so that if many calls to FFTW have similar input, the first one will be slightly
slower, and all the next ones will have a very high speedup. There is also a method, called
wisdom, to save this information so that in a very specific task, that needs always similar
transforms, it will be possible to create and distribute a wisdom just once. Moreover, also the
architecture features and peculiarities are taken into account or specific instruction scheduling.
In order to fully take advantage of this, part of the code is automatically generated, to
produce highly optimized routines. For this purpose, a call is provided in order to allocate the
memory so that these special instructions can work as fast as possible. The FFTW execution
is divided in two parts: planning and execution. The most important is the planning, which
consists of an analysis of the particular problem for choosing the best possible approach: this
knowledge is called wisdom. Details such as the transform size, if the transform is “in-place”
or “out-of-place”, if it is a real, complex, or real-to-complex transform, are taken into account.
However, the planning takes time. For this reason, different levels of planning are available,
so that if the problem is small enough, or if just one transform has to be made, it is possible
to avoid a long planning that would be useless. In such cases, an estimation is made in order
to “guess”, as quickly as possible, a good plan. On the other hand, when the problem needs
many transforms of the same type, it is worth to use the planner in its whole, so that the
loss of performance for the planning is well absorbed by the gain of speed in the transforms
(for more info see [6]).

Remembering we are in the interval [a, b) and that yn = (n− 1)/N , we can obtain the
following algorithm to compute (2.7) and (2.9), using the FFTW library:

• FFT: from the space domain to the frequency domain. The coefficients [f̂1, . . . , f̂N ]T
are: √

b− a
N

· fft
(
[f(x1)e

iπNy1 , . . . , f(xn)e
iπNyN ]T

)
or: √

b− a
N

· fftshift
(
fft
(
[f(x1), . . . , f(xn)]

T
))
. (3.3)

Remark 3.1. The function fftshift translates frequency zero’s value in the center of
the spectrum. This is meaningfull the first Fourier coefficient is the signal’s average
value (it descend from the definition of a0/2 or c0) so we must translate the first
frequency component in the center of our interval.
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• IFFT: from the frequency domain to the space domain. The values [ ˆ̂f1, . . . ,
ˆ̂
fN ]

T are:

N√
b− a

· ifft
(
[f̂1, . . . , f̂N ]

)
◦ [e−iπNy1 , . . . , e−iπNyN ]

or:
N√
b− a

· ifft
(
fftshift

(
[f̂1, . . . , f̂N ]

))
. (3.4)

3.1.3 Computational cost

If FFT, or IFFT, are computed on N equispaced evaluation points, with N power of 2,
the computational cost is O(N log2N). On the other hand, MFT, or IMFT, has a O(N2)
computational cost. However, these costs are asymptotic and can hide costant factors.

3.1.4 Comparison between MFT and FFT

In order to investingate the main differences between MFT and FFT, our calculations
were made on a Personal Comuputer Asus F3Jc, Intel Core Duo T2250 1,73GHz, 2MB
L2 cache, 533MHz FSB processor, running Ubuntu 10.04 Lucid Lynx OS and MATLAB
7.8.0.347 (R2009a). The test function is

f(x) = sin(2*pi*(x-a)/(b-a)) + 2*cos(4*2*pi*(x-a)/(b-a))

and the Figure 3.1 is the output of MATLAB’s script ./MFTvsFFT.m. From the plot, it
appears that exist an N0 (approximatively 64 on our PC) under which is computationally
more convenient using the MFT instead of the FFT [2]. This is due also to the use of
optimized BLAS (Basic Linear Algebra Subroutines) routines in matrix-vector operations. On
the other hand the error, i.e. the difference between the exact value of the test function and
the value found by MFT or FFT, from space domain to frequency domain and backward,
evaluated in infinity norm, is always smaller using FFT rather than MFT: that is because
FFT is a recursive algorithm which uses some simmetries to avoid unnecessary operations.
We computed CPU Times as an average over 150 attemps.

Table 3.1: Output of ./MFTvsFFT.m.

N Fourier coefficients MFT Error || · ||∞ FFT Error || · ||∞
16 7.1346e-15 4.4409e-16
32 1.3950e-14 8.8818e-16
64 2.9571e-14 8.8818e-16
128 7.6440e-14 8.8818e-16
256 1.4631e-13 8.8818e-16
512 3.2998e-13 1.1102e-15
1024 7.0924e-13 1.1102e-15
2048 1.4485e-12 1.7764e-15

Remark 3.2. Note that DFT is using complex arithmetic even if the function to be transformed
is real. So, if the function is real, the operations of transform and inverse transform can
introduce a spurious imaginary part we can get rid of with the MATLAB command real.

In this test we didn’t count the cost of the building of the matrix F because it has been
supposed that this matrix can be build once for all.
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Figure 3.1: From the space domain to the frequency domain and backward. Comparison
between FFT and MFT: CPU Time and Errors.

3.1.5 SpeedyFT

To improve the computational cost of DFT and IDFT in MATLAB we wrote a simple, but
“clever”, function ./speedyFT/speedyFT.m for the PC where we have tested both alghoritms.
This function implements the results shown above: if the input vector is length less or
equal of 64 nodes (according to the results on our PC), which is the discriminating value
to choose if it’t better to use MFTor FFT, ./speedyFT/speedyft.m follow MFT’s way. On
the other hand, if the input’s vector is length more of 64 nodes, ./speedyFT/speedyft.m
follows FFT’s way. Note that both functions ./speedyFT/sft.m, to compute the DFT,
and ./speedyFT/isft.m, to compute IDFT, are “clever” themselves and that the returning
values of these functions are already shifted. To improve further this algorithm, and its usage
on others PC with differenct characteristics, we might use the same method of the FFTW
library. For example, when the SpeedyFT is called for the first time, it is possible to test the
alghoritm in order to find the switching N between MFT and FFT. Moreover it is possible
to save the computed matrices a first time, from 2 to 4096 (powers of two) size, to speed up
the alghoritm. When a computation of another matrix size, not previously saved, is made, it
is a good idea to update the saved matrices.

3.2 M equispaced evaluation points, with M 6= N

This is the case with M evaluation values and N Fourier coefficients, with M 6= N . To test
these implementations, run the MATLAB’s scripts /matrixFT/simple_test_evaluation.m
(for MFT) and /fastFT/simple_test_evaluation.m (for FFT).
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3.2.1 MFT: Matrix Fourier Transform

• M > N : We can compute the Fourier coefficients in the traditional way (3.1) and
compute (2.9) with the basis functions evaluated on an arbitrary set of equispaced
points, i.e. (2.8) formula:

ˆ̂
fk =

N∑
n=1

f̂nφn(xk), with k = 1, . . . ,M

• M < N : There is no difference with the case discussed above.

Simply we can use an arbitrary number of equispaced points on where our function will be
evaluated. So we will use a rectangular matrix in the matrix-vector operation.

3.2.2 FFT: Fast Fourier Transform

• M > N : We can compute the Fourier coefficients in the traditional way (3.3) and
compute the IFFT with the following input:

f̂ ∗ = [0, . . . , 0,︸ ︷︷ ︸
M−N

2
items

f̂ , 0, . . . , 0︸ ︷︷ ︸
M−N

2
items

].

• M < N : Given N Fourier coefficients, we can compute the IFFT on a different set of
M equispaced points using with the following Fourier coefficients:

f̂ ∗ = [ f̂1, . . . , f̂M−N
2
,︸ ︷︷ ︸

items to be deleted

f̂M−N
2

+1, . . . , f̂M+N
2
, f̂M+N

2
+1, . . . , f̂N︸ ︷︷ ︸

items to be deleted

].

In this case the only restriction is to not delete too many frequencies to obtain an
acceptable result.



Chapter 4

Non Equispaced DFT and FFT

In Chapter 3 we discussed about the implementation in MATLAB of the DFT on a set of
equispaced nodes. What if the nodes are not equispaced? This is what we want to investigate
in this chapter because the limit of the FFT algorithm is that is based on symmetries which
hold only with equispaced nodes. Before starting, when we talk about “random nodes”, we
must remember that we have chosen to implement them in MATLAB with the command
rand with an arbitrary fixed seed (choosen s=3 in our tests) to be able to repeat more than
once experiments on the same “random” set.

4.1 The NDFT and NFFT library

Stephan Kunis wrote a dissertation thesis [5] about the computation of the Nonequispaced
Discrete Fourier Transform (NDFT) and the Nonequispaced Fast Fourier Transform (NFFT),
from the space domain to the frequency domain and backward, on a set of nonequispaced
nodes. He used the Fourier Transform with a slightly different notation: we will see in
Section 4.2 how to uniform his notations with the ours. Moreover he provided a library,
written in C, which help us to compute the NDFT and the NFFT [7]. In Sections 4.1.1 and
4.1.2 we briefly show what this library is able to do in order to compute NDFT and NFFT.

4.1.1 NDFT: Non Equispaced Discrete Fourier Transform

The idea underlaying the NDFT is the same idea of MFT: both methods use the standard
matrix-vector multiplication:

• NDFT: from the space domain to the frequency domain, on xn ∈ [−1
2
, 1
2
). The

coefficients [f̂1, . . . , f̂N ]T , defined by Kunis, are

f̂n =

N/2−1∑
k=−N/2

f(x)ei2πkxn , (4.1)

or, in MATLAB:

f_hat = sqrt(b-a)*exp(1i*2*pi*[-N/2:N/2-1].’*y.’)*f(x)/N;.
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• INDFT: from the frequency domain to the space domain on M (in general 6= N)
nonequispaced points y ∈ [−1

2
, 1
2
). The values [ ˆ̂f1, . . . ,

ˆ̂
fM ]T , defined by Kunis, are

ˆ̂
fm =

N/2−1∑
k=−N/2

f̂ke
−i2πkym , (4.2)

or, in MATLAB:

f_hat.’ * exp(-1i*2*pi*[-N/2:N/2-1].’*y.’)/sqrt(b-a);.

All these procediments are implemented in the MATLAB’s script ./nFT/ndft.m and
./nFT/indtf.m.

4.1.2 NFFT: Non Equispaced Fast Fourier Transform

As we will see in Section 4.1.3, NDFT (with its Inverse) requires a too high computational
cost: this is why some alghorithms have been recently developed in order to overcome this
situation. NFFT library, written in C, implements one of them. This is library is avaible on
the web [7] with a mexfile which lets us to use these functions in MATLAB.

The NFFT library, unlike the FFTW library (on which it is anyway based), is not a method
that optimizes and provides a complete exploitation of the machine features, but simply is a
new approximated algorithm that allows to bypass the bottleneck of the direct summation.

From now on, we speak about NFFT referring to the trasformation from given complex
values in frequency domain to values in space domanin. The transformation from the space
domain to the frequency domain is a problem of higher complexity (and out of our aims)
than finding, quickly, the values in the space domain on nonequispaced points from given
complex values.

Let us to assume d = 1 our dimension. Given

• a set of nonequispaced nodes xj ∈ [−1
2
, 1
2
), with j = 1, . . . , N ,

• a set of possible frequencies IN = [−N
2
, N

2
),

• an oversampling factor σ > 1, setting n = σN ,

the main idea is that f(x) can be approximated with a linear combination of shifted 1-periodic
window functions, that is:

f(x) =
∑
k∈IN

f̂ke
−2πikx ≈ s1(x) =

∑
l∈In

glϕ̃
(
x− l

n

)
(4.3)

Hence, starting with a (reasonable) window function ϕ : R → R, its 1-periodic version is
given by

ϕ̃(x) =
∑
r∈Z

ϕ(x+ r).
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The first approximation: cut-off in frequency domain

Using the property of the Fourier transform, we can switch to the frequency domain, so we
get

s1(x) =
∑
k∈Z

ĝkϕ̂ke
−2πikx =

∑
k∈In

ĝkϕ̂ke
−2πikx +

∑
r∈Zr{0}

∑
k∈In

ĝkϕ̂k+nre
−2πi(k+nr)x, (4.4)

with
ĝk =

∑
l∈In

gle
2πik l

n (4.5)

and the Fourier coefficients ϕ̂k defined as

ϕ̂k =

∫ 1/2

−1/2
ϕ̃(x)e2πikxdx, k ∈ Z. (4.6)

If ϕ̂k are small enough for k ∈ Z r In, and if ϕ̂k 6= 0 for k ∈ IN , then comparing (4.2) and
(4.4) we can set

ĝk =

{
f̂k/ϕ̂k if k ∈ IN
0 if k ∈ In r IN

(4.7)

Now, each value gl can be obtained using an IFFT of size n = σN (where the FFTW library is
now used):

gl =
1

n

∑
k∈IN

ĝke
−2πik l

n , with l ∈ In. (4.8)

We immediatly observe that this first part of the approximation introduces an aliasing error.

The second approximation: cut-off in time/space domain

If ϕ is well localized in time domain, it can be approximated by a function

ψ(x) = ϕ(x)χ[−m
n
,m
n
](x)

with support in [−m
n
, m
n
] and m ∈ N, m� n. Again, we define its 1-periodic version as

ψ̃ =
∑
r∈Z

ψ(x+ r).

In this way, we define an approximation of s1(x) by

f(xj) ≈ s1(xj) ≈ s(xj) =
∑

l∈In,m(xj)

glψ̃
(
xj −

l

n

)
, (4.9)

where In,m(xj) = {l ∈ In : nxj −m ≤ l ≤ nxj +m}. For nodes xj ∈ [−1
2
, 1
2
) the above sum

contains at most 2m+ 1 nonzero summands. This second part introduces a truncation error.
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The algorithm

To summarize, given the input values N ∈ N, σ > 1, n = σN , xj ∈ [−1
2
, 1
2
) and f̂k ∈ C the

algorithm can be described as follows.

1. Precompute ϕ̂k, with k ∈ IN .

2. Precompute ψ(xj − l
n
), with l ∈ In,m(xj).

3. Generate ĝk = f̂k/ϕ̂k, with k ∈ IN .

4. Compute gl using a d-variate FFT, in our case d = 1 (at this point, FFTW library is
used).

5. Set
s(xj) =

∑
l∈In,m(xj)

glψ̃
(
xj −

l

n

)
.

The values s(xj) computed in the last step, are the output of the algorithm which represent
the approximated value of f(xj).

4.1.3 Computational Cost

The NDFT can be directly implemented by MFT and requires O(NM) steps, with N repre-
senting the number of Fourier coefficients and M the number of nodes: such computational
complexity is simply too high for most practical applications. The overall complexity of
NFFT for a d-variate transform is O((σN)d log(σN)+mdM) since the d-variate FFT requires
O((σN)d log(σN)) steps and the evaluation of the sum (4.9) requires O(mM) steps.

4.1.4 Error estimation

Since this is an approximated algorithm, we have to give also an estimate of the error (see
[1]) which will be estimated by a sum of the aliasing error (Ea) and the truncation error
(Et). According to (4.9), the total error is splittend in two parts:

E(xj) = |f(xj)− s(xj)| ≤ Ea(xj) + Et(xj) = C(σ,m)||f̂ ||1,

with C(σ,m) depending on the window function choosen and ||f̂ ||1 =
∑

k∈IN |f̂k|.

4.1.5 Some window functions and their C(σ,m)

Now we present some window functions and their Fourier coefficients (see [4]).

Dilated Gaussian

ϕ(x) = (πb)
1
2 e−

(nx)2

b ,

ϕ̂k =
1

n
e−b(

πk
n
)2 .

A good choice parameter b is

b =
2σ

(2σ − 1)

m

π
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as suggested in [1], and
C(σ,m) = 4e−mπ(1−

1
2σ−1

).

Cardinal central B-splines

ϕ(x) =M2m(nx),

ϕ̂k =
1

n
sinc2m

(
k
π

n

)
,

with
C(σ,m) = 4

( 1

2σ − 1

)2m
.

Dilated Keiser–Bessel functions

ϕ(x) =
1

π



sinh(b
√
m2 − n2x2)√

m2 − n2x2
for |x| ≤ m

n
, with b = π

(
2− 1

α

)
,

sinh(b
√
n2x2 −m2)√

n2x2 −m2
otherwise,

ϕ̂k =
1

n


I0

(
m

√
b2 −

(2πk
n

)2)
k = −n

(
1− 1

2σ

)
, . . . , n

(
1− 1

2σ

)
,

0 otherwise,

with

C(σ,m) = 4π(
√
m+m)

4

√
1− 1

σ
e−2πm

√
1− 1

σ .

Remark 4.1. It is important to underline that the Dilated Keiser-Bessel functions are kept as
default from the NFFT library if any window function is specified.

4.2 How to match Kunis’ notations with the ours
Given xj, an arbitrary set of nodes on the interval [a, b), we want to adapt Kunis’ definitons
(4.1) and (4.2) to our way to intend the Fourier Transform. The main differences between
the Kunis’ notations and the ours are two:

• Kunis’ nodes are defined on [−1
2
, 1
2
) but in our notation the nodes are defined on [0, 1).

• DFT and IDFT (or NDFT and INDFT) in Kunis’ notation presents a “minus” factor
in the exponential.

How to fix this issue? Here’s an useful scheme:

• from our to Kunis’ notation: given x ∈ [a, b) we can use Kunis’ scripts with

y = −
(x− a
b− a

− 0.5
)
;

• from Kunis’ to our notation: given y ∈ [−1
2
, 1
2
] we can use our scipts with

x = −(b− a)(y − 0.5) + a.
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4.3 Comparison between MFT, FFT and NFFT
Now it seems useful to make a comparison between the MFT, FFT and the NFFT from
the frequency domain to the space domain. We said that FFT works only for equispaced
points: in order to make an useful comparison of CPU Time and Errors, nobody forbid
us to choose equispaced points also for MFT and NFFT. This is the aim of the script
./MFTvsFFTvsNFFT.m, based on the same test function of Section 3.1.4 and whose output
is the Figure 4.1. Once again, the error computed in our test is the difference between the
exact value of the test function and the value found by MFT, FFT and NFFT, evaluated in
infinity norm.
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Figure 4.1: From the frequency domain to the space domain. Comparison between MFT,
FFT and NFFT: CPU Time and Errors

Table 4.1: Output of ./MFTvsFFTvsNFFT.m.

N Fourier coefficients MFT Error || · ||∞ FFT Error || · ||∞ NFFT Error || · ||∞
16 7.1346e-15 4.4409e-16 4.3396e-12
32 1.3950e-14 8.8818e-16 1.4065e-11
64 2.9571e-14 8.8818e-16 1.1525e-11
128 7.6440e-14 8.8818e-16 1.5687e-11
256 1.4631e-13 8.8818e-16 1.6717e-11
512 3.2998e-13 1.1102e-15 1.6957e-11
1024 7.0924e-13 1.1102e-15 1.7022e-11
2048 1.4485e-12 1.7764e-15 1.7042e-11
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4.4 Conclusions
In conclusion, this comparison show some interesting results:

• NFFT is faster than MFT;

• even if, in this case, FFT is faster than NFFT, we recall that FFT works only for
equispaced points: NFFT works for any set of points, equispaced or not;

• The error using NFFT is higher than MFT and FFT but its order, in our test, is
acceptable.

It’s clear that the NFFT is slightly more expensive than FFT in computation time and not
so accurate as the FFT. However the difference on computation time used and on the errors
made are not so big despite of the great advantage to manage also nonequispaced nodes:
that’s way the NFFT algorithm is very powerful.





Chapter 5

NFFT in solving hyperbolic problems

Consider the follow equation
∂u

∂t
+ a

∂u

∂x
= 0 x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R
(5.1)

with a 6= 0 costant, called transport coefficient. The solution of this problem in a point x is a
wave travelling at the speed a given by

u(x, t) = u0(x− at). (5.2)

The curves x(t) on the plane (x, t), solution of the ordinary differential equation (ODE)
dx

dt
= a t > 0

x(0) = x0, x0 ∈ R,
(5.3)

are called characteristics curves and the solution is constant along them because

d

dt
u(x, t) =

dt

dt

∂u

∂t
(x, t) +

dx

dt

∂u

∂x
(x, t) =

=
∂u

∂t
(x, t) + a

∂u

∂x
(x, t) = 0.

In general: 
∂u

∂t
+ a(x, t)

∂u

∂x
+ a0(x, t)u = f(x, t) x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R
(5.4)

where a(x, t), a0, f are assigned functions with the variables (x, t). The Characteristics Curves
x(t) are the solutions of Cauchy’s problem

dx

dt
= a(x, t) t > 0

x(0) = x0, x0 ∈ R,
(5.5)

In this case, the solutions of (5.4) satisfy the ODE

d

dt
u(x(t), t) = f(x(t), t)− a0(x(t), t)u(x(t), t).

So, it’s possible to find the solution solving an ODE over every characteristic curve. This
approach is called method of characteristics.
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5.1 Solution of an hyperbolic PDE on equispaced nodes
We suppose that f(x) ≡ a0(x, t) ≡ 0 and the transport coefficient a(x, t) is a 2π-periodic
function. Given a set of equispaced nodes {xe}e, an initial solution u0(x) and a problem of
type (5.1), our aim now is to find the solution through the method of characteristic at time
tf on {xe}e. This is not a trivial question because, when a(x, t) 6= c, the new nodes, solution
of (5.5) are not, in general, equispaced so we are only able to build the solution at time tf on
a set of nodes different from those of interest.

Forward Characteristic

Forward characteristic is the standard method to solve the ODE (5.5), providing us, in general,
a set of nonequispaced nodes called {xne}ne. We can find the solution of the hyperbolic
PDE at the time tf only on {xne}ne, different from those of interest, evaluating u0(xs), with
xs ∈ {xe}e, and then making the assignment u(xn, tf) = u0(xs), with xn solution of (5.5)
with initial value xs. To find the solution at the time tf on the set of equispaced nodes {xe}e
we should interpolate u(xn, tf ), xn ∈ {xne}ne, and rebuild the values on {xe}e. We could use
NFFT from the space domain to the frequency domain and then use the IFFT from the
frequency domain to the space domain in order to be able to perform the next timestep:
however, we said that switching from the space domain to the frequency domain by NFFT is
a difficult task.

Backward Characteristic

The right approach to reach our aim is considering the initial set of equispaced nodes {xe}e
as the nodes reached at the final time tf . So we want to investigate from which points, called
again {xne}ne, to remark that in general they are nonequispaced, {xe}e are coming from.
This is the meaning of solving the system (5.5) backward, in time. It’s easy to find out the
new ODE to be solved. Given an interval [t0, tf ], a function a(x(t), t) and the ODE

dx

dt
= a(x(t), t)

x(tf ) = xs, xs ∈ {xe}e

we want to find out the solution x(t0). Changing the variables in this way{
t̃ = −t
x̃(t̃) = x(t)

we have

{
t = −t̃
x(t) = x̃(−t).

So the new ODE to be solved is
dx̃

dt̃
=

dx̃

dt

dt

dt̃
=

dx̃

dt
· (−1) = −a(x̃(t̃),−t̃) = −a(x̃(t), t)

x̃(−tf ) = xs.
so


dx̃

dt
= −a(x̃(t), t)

x̃(−tf ) = xs.
(5.6)

Now it’s possible to solve the new ODE (5.6) forward in time, with the meaning that solving
forward in time is equal, in the original ODE, to have assigned the values at the time tf and
we want to find out the values at the time t0. Relabelling x̃ with x we have:

dx

dt
= −a(x, t) t ∈ [−tf ,−t0]

x(−tf ) = xs, xs ∈ {xe}e.
(5.7)
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Now with the solution of (5.7), called for our conveniency {xne}ne and in general nonequispaced
as we said, we can find the values at the time t0 on {xne}ne so that

u(xs, tf ) = u0(xn), (5.8)

with xn ∈ {xne}ne solution of (5.7) with initial value xs. The meaning of (5.8) is that the
values u0(xn) are the values of the solution at the final time tf on the set of equispaced nodes
called xs ∈ {xe}e. To solve this ODE we can use a Runge–Kutta–Fehlberg45 method, of
order 5, which is adapative in time with

dt = min(2,max(0.6,abs(0.9*(tol/norm(err))ˆ(1/5))))*dt;

and should reach the error required (in our tests 10−15). This method is implemented in
./hyper/rk45.m (in table (5.1) we can see the Butcher matrix, with Fehlberg coefficients) [8].

Table 5.1: Butcher matrix, with Fehlberg coefficients

c a1 a2 a3 a4 a5 a6

0 0 0 0 0 0 0
1
4

1
4

0 0 0 0 0
3
8

3
32

9
32

0 0 0 0
12
13

1932
2197

−7200
2197

7296
2197

0 0 0

1 439
216

−8 3680
513

− 845
4104

0 0
1
2
− 8

27
2 −3544

2565
1859
4104

−11
40

0

b 25
216

0 1408
2565

2197
4104

−1
5

0

b̂ 16
135

0 6656
12825

28561
56430

− 9
50

2
55

Error 1
360

0 − 128
4275

− 2197
75240

1
50

2
55

When the initial function u0(x) is given, it is easy to find u0(xn), but when we know only
the initial values on the equispaced nodes it is more difficult. To proceed in next timesteps
it is very useful using FFT from the space domain to the frequency domain and the NFFT
from the frequency domain to the space domain: in this way we are always able to know the
values of the initial function everywhere in our space domain becuase the NFFT helps us to
rebuild the initial function on the nonequispaced set found by solving (5.7).

This is an useful scheme to summarize:

1. Are given:

• a set of xs ∈ {xe}e, equispaced nodes;

• initial values u0(xs);

• a problem of type (5.1).

2. We can find xn ∈ {xne}ne, set of nonequispaced nodes in general, solution of the ODE
(5.7) with initial value xs.
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3. Using the FFT (3.3), from space domain to frequency domain on the initial values
u0(xs), lets us to compute the Fourier coefficients of the initial function.

4. Using the NFFT (4.9), from frequency domain to space domain on the set of nonequis-
paced nodes {xne}ne, lets us to rebuild the initial value u0(xn).

5. Now u0(xn) is the value of the solution of the hyperbolic PDE (5.1) on the node xs at
the final time tf , i.e. u(xs, tf ).

Example 5.1. In order to test how good is the method we can try to solve an 1D hyperbolic
PDE which solution is known [9]. Given the 1D hyperbolic PDE:

∂u

∂t
− sin(x)

∂u

∂x
= 0 x ∈ [0, 2π), t ∈ (0, 1.571]

u(x, 0) = sin(x) x ∈ [0, 2π),
(5.9)

for which the exact solution is u(x, t) = sin
(
2 tan−1

(
et tan

x

2

))
, we can solve the ODE

dx

dt
= sin(x) x ∈ [0, 2π), t ∈ (0, 1.571]

x(0) = x, x ∈ [0, 2π)
(5.10)

in order to find from which nodes the equispaced nodes x are coming from backward in time.
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Figure 5.1: Location of the new nodes, solution of ODE (5.10)
.

Now, introduced an equispaced discretization of the nodes in [a, b) we can solve in
MATLAB the ODE (5.10): the solution, found with ./nFT/rk45.m, is shown in Figure 5.1.
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The top plot shows the location of the given equispaced nodes. The plot below shows the
location of the new nodes, solution of the ODE (5.10). Then, calling the NFFT with input
Fourier coefficients computed on the initial equispaced sampling nodes (using FFT) and with
the new nodes, takes us to find out the values of the initial function, which we didn’t know
before, at the new nonequispaced nodes: these values will be the values of the solution u(x, t)
on the initial equispaced sampling nodes at the time t required. Note that, in general, the
interval where the new nodes lie on might be not the same of the initial interval [a, b) so we
have to use the MATLAB command mod(xn,b-a), where xn are the new nodes, solution of
(5.10).
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Figure 5.2: Output of ./hyper/nfft4hyper1dex1.m.

In the Figure 5.2 we can see three plots: the top right plot shows the initial values and
the initial equispaced nodes, the top left plot shows the values computed with NFFT from
the frequency domain to the space domain on the nonequispaced nodes, solution of (5.7) and
the bottom plot is the final solution on the initial equispaced nodes at the time t = 1.571.
Note that the blue line is always referred to the reference values not in a discrete time but in
continuous time. The error, computed as the difference between the exact solution, given by
analysis, and the computed solution, evaluated in infinity norm, is 1.7148e-12.

Example 5.2. We can test our method on another PDE equation [9]:
∂u

∂t
− 1

2 + cos(x)

∂u

∂x
= 0 x ∈ [0, 2π), t ∈ (0, 50.27]

u(x, 0) = sin(x) x ∈ [0, 2π),

(5.11)
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Figure 5.3: Location of the new nodes, solution of ODE (5.12)
.
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Figure 5.4: Output of ./hyper/nfft4hyper1Dex2.m.
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for which the exact solution is u(x, t) = sin(2x+ sinx+ t), we can solve the ODE
dx

dt
=

1

2 + cos(x)
t ∈ (0, 50.27]

x(0) = x, x ∈ [0, 2π),

(5.12)

in order to find from which nodes the nodes x are coming. The meanings of Figures 5.3 and
5.4 are the same of Figures 5.1 and 5.2, respectively. This is not a trivial example because this
is the case when the interval, where the new nodes lie on, does not correspond to the same
initial interval [a, b), due to transport coefficient. So we have to use the MATLAB command
mod(xn,b-a), with xn solution of (5.12), to find the solution on the nodes of interest. The
error, computed as the difference between the exact solution, given by analysis, and the
computed solution, evaluated in infinity norm, is 1.1516e-12.

Remark 5.1. In both examples we required a tolerance of 10−15 for rk45.m: from our tests
we can conclude that this target tolerance is too high to be required despite of the error
committed of order 10−12: this is due to the use of NFFT algorithm, which order of tolerance
is between 10−12 and 10−11 (see Section 4.3).





Chapter 6

Conclusions

The aim of our thesis has been reached: our tests in MATLAB showed that

• if the nodes are equispaced, the Fast Fourier Transform (FFT) is the most accurate
transformation we can do, in terms of accuracy and the best in terms of computational
cost (from a certain number N of coefficients);

• if the nodes are not equispaced, the Nonequispaced Fast Fourier Transform (NFFT) is
faster than the direct computation and only slightly less accurate.

NFFT is very powerful in some applications like finding a solution of an hyperbolic Partial
Differential Equations, with a periodic transport coefficient.
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