QR CODE

An industrial application of Code Theory

Davide Boscaini, Simone Parisotto

Universita di Verona
Dipartimento di Scienze Matematiche Fisiche e Naturali

Laurea Magistrale in Matematica
Corso di Algebra Computazionale

18 Ottobre 2012

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 1/1



History

History

QR-Code is a two dimensional barcode (datamatrix);
The acronym QR is derived from the term Quick Response;
Created to store more data and characters than classical barcodes;

Invented in Toyota subsidiary Denso Wave in 1994 to track vehicles during the
manufacturing process;

Japanese standard for QR-Codes, devised by Denso Wave, is JIS X 0510 (January 1999).
ISO International Standard (ISO/IEC 18004), approved in June of 2000, updated back in
2006 (ISO/IEC 18004:2006);

@ Today applications: Magazines, Papers, Business Cards, Buses, Signs, T-shirts...
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Workflow

Workflow

QR Version (1) |

Input message

|

[Formar @nary | (e
| Eccamu |-

‘ Create Error Codewords (EC) ‘

Message + Format to ASCII 1

| EC to ASClI |

| EC to BIN |

Output message

QR CORRUPTED

Read QR Version (1)

Read Format

Read ECC s | QR CORRECTED | =
N | Message Correction: RS(26*,k**,r**) |

Read Binary Message

Binary Message to ASCII

| Format correction: BCH(15%,5%,7%)

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 3/1



Case study: 'Twas brillig

Case study: 'Twas brillig (Lewis Carroll, 1871) - QR 1

Input Type

ECC Blocks Number
Bin ID Bit Length Bin 1D % Message EC
[0001] N 10 o1 L 7% 19 7
ool0] A 9 oo] M 15% 16 10
[o100] B 8 1] Q 25% 13 13
[1000] K 8 [10] H  30% 9 17
Type Length Message EOF Extra (236,17)
Byte 13 "Twas brillig 0000 16 —2—-13=1
39 84 119 97
115 32 98 114
AsCll 105 108 108 105 236
103
00100111 01010100 01110111 01100001
01110011 00100000 01100010 01110010
BIN 0100 00001101 01101001 01101100 01101100 01101001  °°° 11101100
01100111
BIN 01000000 11010010 01110101 01000111 01110110 00010111 00110010 00000110
00100111 00100110 10010110 11000110 11000110 10010110 01110000 11101100
ASCII 64 210 117 71 118 23 50 6
39 38 150 198 198 150 112 236
POLY

+39x7 + 38x% + 150x° + 198x* 4 198x3 + 150x2 + 112x + 236

m(x) = 64x*® 4+ 210x™ + 117x*3 4 71x*2 + 118x** + 23x1° 4 50x° + 6x%+
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Creating Error Codewords

Creating Error Codewords

@ The number of erasures and errors correctable is given by the following formula:
e+ 2t < d— p, where

@ e = number of erasures (erroneous codewords at known locations): unscanned or
undecodable symbol character;

@ t = number of errors (erroneous codewords at unknown locations): misdecoded
symbol character;

@ d = number of error correction codewords;

@ p = number of misdecode protection codewords;

ECC d p RS(c,k,r)** Recovery Capacity
e=0 e=1 e=2

L7 3 2 0 0 (26,19,2) 100 * r/26 ~ 07%

M 10 2¢ 4 3 2 (26,16,4) 100  r/26 ~ 15%

Q 13 1* 6 5 4 (26,13,6) 100 * r/26 ~ 25%

H 17 1* 8 7 6 (26,9,8) 100 * r/26 ~ 30%

(*) for QR Version 1

(**) c = total number of codewords, k = number of data codewords, r = error correction capacity
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Creating Error Codewords

Generator polynomials & Encoding Error Codewords

Number of error Generator polynomials, C = (g(x))

correction codewords g(x) = (x —a®)(x —al) ... (x — a("_"_l))
L: n— k=07 x7 4+ aB7x® + a229x5 4 1464 | o149,3 | 23852 4 102, | o2,
M: n— k=10 x10 4 025159 4 8748 4 o407 4 o51x0 4

+c¥118X5 + a70X4 +&54X3 + aQAXZ +&32X+&45;
Q:n—k=13 X134 o74,12 | 152,17 | 176,10 . 100,9 , 86,8  100,7
+0¢106X6 4 0¢1°4X5 4 04130)(4 4 (1218)(3 + aZOGXZ 4 0(140)( 4 a73;
H:n— k=17 X17 + 0443X16 + 04139X15 + aZOGXIA + 0‘78)(13 + a43X12+
4239511 | 123,10 | (206,90 | 214.8 , 147,7 | 24,6
99,5 150, 4 39 3 243 2 163 136.

+a”7x 4+« X"+ a7 xT + o X+ o X+ a H

a is the primitive element 2 under GF(28);

We chose M as ECC ID for 'Twas brillig so we expect deg r(x) = 9 in x” I‘m(x) = a(x)g(x) + r(x), where
@ a(x) = 64x5 + 214x™ 1 88x13 + 145x12 + 17xM + 169510 + 127x° 4 62x® + 105x7 4 248x5 + 96x5 +
35x% + 97x3 + 244x2 4 151x + 18
@ r(x) = 188x% 4 42x® + 144x7 4 19x® + 107x5 + 175x* + 230x3 + 253x2 + 75x + 224.

Coefficients of r(x) are our error correction codewords.
So QR Code must include (in binary) message codewords with error correction codewords:
(64,210,117, 71, 118, 23, 50, 6, 39, 38, 150, 198, 198, 150, 112, 236, 188, 42, 144, 19, 107, 175, 239, 253, 75, 224].
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Finite field arithmetic

Finite field arithmetic

GF(p") is the finite field with p" element (p prime): the ring of integers modulo p;
elements of GF(p") are represented as polynomials (degree < n) over GF(p);
operations are performed modulo R, an irreducible polynomial of degree n over GF(p);

if p =2, the elements of GF(p") are expressed as binary numbers.

Addition and Subtraction

Performed by adding or subtracting two of these polg/nomials together, and reducing the result modulo the
characteristic. Example in GF(2): (x3 + x + 1) + (x> + x%) = x® + x + 1, (# 2x> + x> + x + 1).

Multiplication

Is multiplication modulo an irreducible reducing polynomial used to define the finite field. Example with irreducible
reducing polynomial R(x) = x® + x* + x> + x + 1:

(X8 + X%+ x+1)(x7 +x% 453 +x) = (x33 + x12 £ x4 x10 4+ x® £ xB 4 x8 4+ x5+ x* + x3 + x2 4+ x) mod R(x) =
= (11111101111110 mod 100011011) = 1 (demostrated with long division with XOR).

W

Division (aka Multiplicative Inverse)

Is performed making a logarithm table of the finite field, and performin% subtraction in the table. Subtraction of
logarithms is the same as division. Example: 8 : 4 = 2 is equal to log(a3) — log(a?) = 1 and o = 2 with 2
primitive element of GF(28).

v
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Why Reed-Solomon?

Why Reed-Solomon?

Reed-Solomon are a good choice because:
@ are useful in correcting burst error (used in concatenated form): CD, DVD ...;
@ they are optimal k = n — d + 1 (Maximum Separable Distance);

but they require a large alphabet size (Singleton Bound).

If we operate on bits, how to convert the codewords over the large field in the binary alphabet? J

Example: write every element of a code defined over Fas¢ as an 8-bit vector.

Theory of Concatenated and Shortened Reed-Solomon Codes is applied in QR Code. But the

resulting code isn't optimal: BCH is better!
v

Answer to the question: Why is still used Reed-Solomon instead of BCH?

The main reason that Reed-Solomon are still frequently used is that in many applications — and
in particular in storage device applications — errors often occur in bursts. Reed-Solomon codes
have the nice property that bursts of consecutive errors affect bits that correspond to a much
smaller number of elements in the field on which the Reed-Solomon code is defined.

Example: if a binary code constructed from the RS(256,230) code is hit with 30 consecutive
errors, these errors affect at most 5 elements in the field Fas6 and this error is easily corrected.
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Concatenated and Shortened Reed-Solomon codes

Concatenated and Shortened Reed-Solomon codes

Concatenated RS-codes (Forney, 1966)

Let A(n, k, d) the inner-code over Fy. Let Q = g* and define 4 : Fg — A a one-to-one
Fq-linear map. Fq is an extension field of Fq. Let B an (N, K, D) outer-code over Fg. The
concatenation of A and B is the code C = {¢(b1, b2, ..., bn)|(b1, b2, . .., by) € B} where
w(bla b2a 9090 bN) = (¢(b1)a¢(b2)7 000 ad)(bN))

Let A and B as above. Then C is a linear (nN, kK) code over Fq, (minimum distance > d - D).

Example: In our case study we have A(8,8,1) and (26,16, 9x) (*with misdecode protection
codewords). C is a linear (8 - 26,8 - 16) = (208, 128) code over F» (min. distance > 1-9 =9).

Shortened RS-codes

Reed-Solomon codes may be shortened by (conceptually) making a number of data symbols
zero at the encoder, not transmitting them, and then re-inserting them at the decoder.

Example: A (256,175) code can be shortened to (208,128). The encoder takes a block of 128
data bits, (conceptually) adds 48 zero bits, creates a (256,175) codeword and transmits only the
128 data bits and 80 parity bits.

NB: Each generator g(x) provided from the QR ISO standard divide x25¢ — 1. J
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Choosing the Best Mask Layer

Choosing the Best Mask Layer

@ i j start from O;

@ % is the modulo operation, =+ is the integer division;

i
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Penalty Method

Penalty Method

Each unmasked qrcode must be masked for a better recognition in the device scanner. Based on
a penalty method, we evaluate each masked qrcode we choose the mask layer with the lowest
penalty. An example to follow.

Penalty rule #1

If five or more of the same colored pixels are next to each other in a row or column. For the first
five consecutive pixels, the penalty score is increased by 3. Each consecutive pixel after that
adds 1 to the penalty.

At A wares act & penaliy of 3.
B e e aErir Thelt sddd! § T rie PO
3
V

3 X Vares aef & penally of 3. . 3
B e e abrr anel wddd Lt PO Gontr 419se 2 o

Yot all

92

HEE — 2
Hor1Zoata
Toral: 3§
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Penalty Method

Penalty rule #2

Each 2x2 block of the same color adds a penalty of 3 to the amount.

Penalty rule #3

Each pattern (in row or column) [1011101] with 4 white pixels on either or both sides adds a
penalty of 40 to the amount.

v
Penalty rule #4

This rule is based on the ratio of dark to light pixels: the closer the ratio is to 50% dark and
50% light, the better the penalty score will be.
Formula: 10 * abs(fix(100 = (#black pixels/#total pixels) — 50))/5

Penalty rule #2 Penalty rule #3 Penalty rule #4

" Rute
penetrye
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Penalty results for our case study

Penalty results for our case study

Here we present the penalty method applied to our unmasked QR image:

: pl+p2+p3+p4 = 452 5'-% s mask 4: pl+4+p2+p3+p4 = 436

g [EEE
: pl4+p2+p3+p4 = 445 EiE‘E [ mask 5: pl+p2+p3+p4 = 511

pl+4p2+4p3+p4 = 337 L‘iﬁ mask 6: pl+4p2+p3+p4 = 408

“

mask 3: pl+4p2+p3+p4 = 367 X’% mask 7: pl+4+p2+p3+p4 = 549

So we choose mask layer ID 2 which pattern is 010.
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Encode Format Row and write the image

Encode Format Row and write the image

The penalty method is applied to every mask choosen in order to apply he best mask layer.
What about encoding information row? Choosing

g(x)=xP0 4+ x5+ x* x4 x+1
as generator polynomial for BCH code (15,5), we have
ax™® 4+ bx13 4+ ex!? + dx1! + ex10|g(x),

with a, b coefficients of the ECC ID choosen and c, d, e the mask layer ID choosen. The
remainder of this operation is what to include in the last 10 empty bits. So we can write the
encoded message in the image:

P aciai asiia
1o
(1o 10138
sh1sofannas
»
m
"
501 v
T g e R T R R ER

a4 s 7278 1[50 20190
T 3wl of3 218 10
ol o259t a1130 o774 oo 35[3 1714

631311568 067 37 3615 14

71170117316 91190 o5 64| 20[38 12113 8
7317211811493 92|63 621 a0/ 10 9
757012112 95194 1 [60| 4243 94 10
7717611111097 9689 0[5 a0 7 11
79178109108 99,98 5756 4748 s 12
" 100[[85 s4/48 483 13
14 w381 51080 1 14
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The Noisy Channel

The Noisy Channel

Now we have to create a mathematical model of a noisy transmission channel. A possible
mathematical model is Binary Symmetric Channel (BSC): if 0 or 1 is sent, the probability that
it is received without error is 1 — p; if a O (respectively 1) is sent, the probability that a 1
(respectively 0) is received is p. So the probability that one bit is received without error is 1 — p,
and then the probability that is received the wrong bit is p. In most practical situations p is very
small. A BSC has capacity

C(p) =1+ plogz p+ (1 — p)logy (1 — p).

The following illustration describes quite well the precedent model

1_
0 L)

I-p

In our case study we choose a probability p = 0.15 and then C(p) = 0.4.

Shannon Theorem

Given § > 0 and R < C(p) exist a linear binary code C(n,k) with k/n > R and
Perr =1 =37 ga;ip' (1 —p)"~" < 6 (with o; number of cosets of weigth 7).
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The Noisy Channel

For implement this mathematical model we use the MATLAB function bsc,

NDATA = bsc(DATA,P) passes the binary input signal DATA through a binary
symmetric channel with error probability P. If the input DATA is a Galois field
over GF(2), the Galois field data is passed through the binary symmetric
channel.

NDATA = bsc(DATA,P,S) causes RAND to use the random stream S. S is any valid
random stream.

where we have fixed the seem of the random number generator to compare repeated
experiments.

We choose to pass trough the BSC only the format pattern. The result is the following

In the left figure is highlighted the format pattern of the original QR code, in the right one is
highlighted the format pattern of the received QR code.
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The Noisy Channel

For the rest of the code, i.e. the message codewords and the error correcting codeword, the
effect of noise in the transmission channel is manifested by the occurrence of errors in
codewords. In our test study we suppose that the scanner of the code can't read in the correct
way the first two codewords. The effect of the wrong lecture is that all the bits of the first two
codewords are zeros.

Observation

We consider this an error and not an erasure.

The result is the following

In the left figure there is the original QR code, in the right one the received QR code.
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BCH(15,5,7) for correcting information pattern

BCH(15,5,7) for correcting information pattern

The information pattern is a BCH(15,5,7) code. BCH code were discovered around 1960 by
Hocqueghem and independently by Bose and Ray-Chadhuri. For the description of this
algorithm we mainly refer to the section 5.1 of the book Fundamentals of Error Correcting
Codes wrote by C. Huffman and V. Pless.

BCH codes are cyclic codes designed to take advantage of the BCH bound, i.e.

Theorem (BCH Bound)

Let C be a cyclic code of length n over Fg with defining set T. Suppose C has minimum weight
d. Assume T contains § — 1 consecutive elements for some integer §. Then d > 6.

For decoding this code we use the MATLAB function bchdec,

DECODED = bchdec(CODE,N,K) attempts to decode the received signal in CODE using
an (N,K) BCH decoder with the narrow-sense generator polynomial.

CODE is a Galois array of symbols over GF(2).

Each N-element row of CODE represents a corrupted systematic codeword, where the
parity symbols are at the end and the leftmost symbol is the most significant
symbol. bchdec uses the Berlekamp-Massey decoding algorithm.

In our case study we have N = 15 and K = 5.
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BCH(15,5,7) for correcting information pattern

The result is the following

| E%“

where the top left figure represent the information pattern of original QR code, the top right the
information pattern of the QR code received and the bottom left the restored information
pattern.
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The PGZ Algorithm for correcting QR Symbol

The PGZ Algorithm for correcting QR Symbol

As we have seen in the previous slides, Reed-Solomon codes are a particular subfamily of BCH
codes. We choose to decoding them with the Peterson-Gorenstein-Zierler Algorithm. This
method was originally developed for binary codes by Peterson in 1960 and generalized shortly
thereafter by Gorenstein and Zierler to nonbinary BCH codes (our case study). For the
description of this algorithm we mainly refer to the section 5.4 of the book Fundamentals of
Error Correcting Codes wrote by C. Huffman and V. Pless.

Let C be a BCH code over Fq of length n and designed distance §. As the minimum distance of
C is at least §, C can correct at least t = [(6 — 1)/2] errors. The PGZ Decoding Algorithm will
correct up to t errors. Therefore the defining set T of C will be assumed to contain

{1,2,...,8 — 1}, with « the primitive nth root of unity in the extension field Fgm of Fq, where
m = orda(q).

Suppose that y(x) is received and that it differs from a codeword c(x) in at most t coordinates.
Therefore y(x) = ¢(x) 4+ e(x) where ¢(x) € C and e(x) is the error vector witch has weight
v < t. Suppose that the errors occur in the unknown coordinates ki, ka2, ..., k. Therefore

e(x) = :.=3;<1xk1 + ekzxk2 + -+ ekuxk”. (1)

Once we determine e(x), which amounts to finding the error locations k; and the error
magnitudes e, we can decode the received vector as c(x) = y(x) — e(x).
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The PGZ Algorithm for correcting QR Symbol

Recall that ¢(x) € C if and only if c(af) = 0 for all i € T. In particular
y(a') = c(af) + e(a) = e(a’) for all 1 < i < 2t
since 2t < 6 — 1.

The PGZ decoding algorithm requires four steps.

Compute the syndromes S; = y(af) for 1 < i < 2t from the received vector (we are working
with the arithmetic of the finite field Fgqm).

For this step is quite useful the following

Sig=S7 forall i > 1.

because it allows us to avoid a lot of evaluations of the received polynomial and then could help
us to reduce the computation costs of the algorithm.
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The PGZ Algorithm for correcting QR Symbol

Notice that from the equation (1) the syndromes satisfy

Si = y(a) Zek(a Zek(aJ

for 1 < i < 2t. To simplify the notation, for 1 < j <, let E; = ex; denote the error magnitude

at coordinate kj and X; = o denote the error location number corresponding to the error
location k;. Wlth this notatlon become

S_ZE , for 1< i< 2t ()

which leads to the system of equations

S1i=EXi+EXo+---+EX
So=E X2+ E X2+ + E X?
(3)

Sor = E1 Xt + B2 X3t 4+ .. 4+ E, X2

This system is obviously nonlinear in the Xjs with unknown coefficients E;.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 22 /1



The PGZ Algorithm for correcting QR Symbol

The strategy is to transform the precedent into a linear system involving new variables

01,02, ...,0y, that will lead directly to the error location numbers. Once these are known, we
return to the system (3), witch is then a linear system in the Ejs and solve for the error
magnitudes.

To this end, define the error locator polynomial to be

o(x) =(1—xX1)(1 —xX2)--- (1 —xXy,) =1+ XV: oix'.
i=1

The roots of o(x) are the inverses of the error location numbers and thus
o X7 ) =1401X 02X 2+ f XV =0for 1< <. (4)
Multiplying (4) by EJ-XJ.'.“’ produces
Eij"Jr” + alEjXJ."ﬂ'*1 4+ chEjXJ-" =0 for any i.
Summing the result obtained over j for 1 < j < v yields
v v v
i+ i+v—1 i
ST BN oSBT Y X =0
j=1 j=1 j=1

As long as 1 < i and i + v < 2t, these summations are the syndromes obtained in (2). Because
v < t, the precedent equation becomes

01Sitv-1+ 0252+ +0,5 =-S5, for 1 <i<w.
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The PGZ Algorithm for correcting QR Symbol

Thus we can find the os if we solve the matrix equation

St S ... So1 S, o —Syi1
S S ... Sy Su+1 oy—1 —Su42

= (5)
Sy Suyr ... S22 S o1 —Sau.

Lemma

Let p < t and let

SS S ... S,
S S3 500 5H+1

My, = - 5 5
S/_L SH+1 cee 52”,71

Then M, is nonsingular if 4 = v and singular if ;1 > v, where v is the number of errors that
have occurred.

To execute the second step of our algorithm, we attempt to guess the number v of errors. Call
our guess p and starts with p = t, witch is the largest that v could be. The coefficients matrix
of the linear system (5) is M, = M;.

Second step

In the order p = t, p =t —1, ... decide if M, is singular, stopping at the first value of ;1 where
M, is nonsingular. Set v = p and solve (5) to determine o(x).
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The PGZ Algorithm for correcting QR Symbol

Find the roots of o(x) by computing o(a’) for 0 < i < n. Invert the roots to get the error
location number X;.

Solve the first v equations of (3) to obtain the error magnitudes E;.

In fact we need to consider only the first v equations in (3) because the coefficient matrix of the
first v equations has determinant

X1 X2 ... Xy 1 O |
X2 Xz ... X2 X1 X2 ... X
det | . . . = X1 X2+ X, det
Xy Xy ... Xy Xy~toxytoL o xptt

The latter is the transpose of a Vandermonde matrix and is well known that its determinant is
nonzero as the X;s are distinct.

Observation

If the BCH code is binary, all error magnitudes must be 1. Hence step four can be skipped.
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The PGZ Algorithm for correcting QR Symbol

The result is the following

where the top left figure represent the original QR code, the top right the received QR code and
the bottom left the restored QR code.
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How can PGZ algorithm be improved?

How can PGZ algorithm be improved?

The title of this slide report a question that couldn’t be skipped.

The second step of the PGZ Algorithm is the most complicated and time consuming. In this
step in fact we have to solve the linear system (5), a problem that corresponds to the inversion
of the matrix M.

This isn't a problem when the error capability of the code is rather small, because, in these
cases, the matrix M, has small dimensions and the PGZ Algorithm is quite efficient. But when
the error capability of the code is very large and then the size of the matrices M, becomes very
large, the inversion of the matrix M, become an hard problem and step two becomes very time
consuming.

We can prevent this problem choosing one of the following algorithms

@ The Berlekamp-Massey Algorithm uses an iterative approach to compute the error
locator polynomial in a more efficient manner when t is large.

@ The Sugiyama Algorithm is another method that uses the Euclidean Algorithm to find
the error locator polynomial. This algorithm is quite comparable in efficiency with the
Berlekamp-Massey Algorithm.

Finally, also step three can be quite time consuming if the code is long, however little seems to
have been done to improve this step.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 27 /1



Recovery hidden output message

Recovery hidden output message

Once we have corrected the corrupted image, we are ready to recovery the hidden message.
@ Select the format information row: [101111001111100];

el | 0"y Bl

@ Unmask the first 5 bits [10111] with the standard rule: [10111]—[10101] =[00010];
@ [00] is the ECC format recognized: M is the ECC;
@ [010] is the mask layer's format recognized: 2 is its mask layer ID.

Then we can discover the hidden image:

Masked Image — Mask Layer Unmasked Image

[m] ¥ [m] IT1| [=];A[x]
e Il &
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Recovery hidden output message

Once obtained the unmasked image is very simple to read the hidden message.

@ Check the 2 x 2 block in the right-bottom corner of the image:
=l

@ Unroll it: [0100]. It tells us the message is in Binary format;

@ Check the 4 x 2 block on top of previous block:

CIE St

@ Unroll it: [00001101]. It tell us there are 13 codewords to read;
@ Remembering that 1 Byte is 8 Bit for M, read the next 13*8 bits:

[=]

or, in decimal: [398411997 1153298114 105108 108 105 103];

@ The previous sequence, converted in unicode, returns 'Twas brillig.

Our decoding process ends successfully.
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Extra Tests

Extra Tests

Some QR images generated from our MATLAB code:

EGE ERE EE

B Eik4: [E]

www.univr.it Hello World id000000@univr.it
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http://www.pclviewer.com/rs2/calculator.html

http://www.thonky.com/qr-code-tutorial /

Please take care to use error correction codewords from the last two website: the polynomial
division algorithm fails in some cases!

Thank you for your attention.
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