
QR CODE
An industrial application of Code Theory

Davide Boscaini, Simone Parisotto

Università di Verona
Dipartimento di Scienze Matematiche Fisiche e Naturali

-
Laurea Magistrale in Matematica
Corso di Algebra Computazionale

18 Ottobre 2012

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 1 / 1

History

History

QR-Code is a two dimensional barcode (datamatrix);

The acronym QR is derived from the term Quick Response;

Created to store more data and characters than classical barcodes;

Invented in Toyota subsidiary Denso Wave in 1994 to track vehicles during the
manufacturing process;

Japanese standard for QR-Codes, devised by Denso Wave, is JIS X 0510 (January 1999).
ISO International Standard (ISO/IEC 18004), approved in June of 2000, updated back in
2006 (ISO/IEC 18004:2006);

Today applications: Magazines, Papers, Business Cards, Buses, Signs, T-shirts...

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 2 / 1

Workflow

Workflow

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 3 / 1

Case study: ’Twas brillig

Case study: ’Twas brillig (Lewis Carroll, 1871) - QR 1

Input Type ECC Blocks Number

Bin ID Bit Length Bin ID % Message EC

[0001] N 10 [01] L 7% 19 7
[0010] A 9 [00] M 15% 16 10
[0100] B 8 [11] Q 25% 13 13
[1000] K 8 [10] H 30% 9 17

Type Length Message EOF Extra (236,17)

Byte 13 ’Twas brillig 0000 16− 2− 13 = 1

ASCII

39 84 119 97
115 32 98 114
105 108 108 105
103

236

BIN 0100 00001101

00100111 01010100 01110111 01100001
01110011 00100000 01100010 01110010
01101001 01101100 01101100 01101001
01100111

0000 11101100

BIN 01000000 11010010 01110101 01000111 01110110 00010111 00110010 00000110
00100111 00100110 10010110 11000110 11000110 10010110 01110000 11101100

ASCII 64 210 117 71 118 23 50 6
39 38 150 198 198 150 112 236

POLY m(x) = 64x15 + 210x14 + 117x13 + 71x12 + 118x11 + 23x10 + 50x9 + 6x8+
+39x7 + 38x6 + 150x5 + 198x4 + 198x3 + 150x2 + 112x + 236

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 4 / 1

Creating Error Codewords

Creating Error Codewords

The number of erasures and errors correctable is given by the following formula:
e + 2t ≤ d − p, where

e = number of erasures (erroneous codewords at known locations): unscanned or
undecodable symbol character;
t = number of errors (erroneous codewords at unknown locations): misdecoded
symbol character;
d = number of error correction codewords;
p = number of misdecode protection codewords;

ECC d p t RS(c,k,r)∗∗ Recovery Capacity
e = 0 e = 1 e = 2

L 7 3∗ 2 0 0 (26,19,2) 100 ∗ r/26 ≈ 07%
M 10 2∗ 4 3 2 (26,16,4) 100 ∗ r/26 ≈ 15%
Q 13 1∗ 6 5 4 (26,13,6) 100 ∗ r/26 ≈ 25%
H 17 1∗ 8 7 6 (26,9,8) 100 ∗ r/26 ≈ 30%

(*) for QR Version 1
(**) c = total number of codewords, k = number of data codewords, r = error correction capacity

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 5 / 1

Creating Error Codewords

Generator polynomials & Encoding Error Codewords

Number of error Generator polynomials, C = (g(x))
correction codewords g(x) = (x − α0)(x − α1) . . . (x − α(n−k−1))

L: n − k = 07 x7 + α87x6 + α229x5 + α146x4 + α149x3 + α238x2 + α102x + α21;

M: n − k = 10 x10 + α251x9 + α67x8 + α46x7 + α61x6+
+α118x5 + α70x4 + α64x3 + α94x2 + α32x + α45;

Q: n − k = 13 x13 + α74x12 + α152x11 + α176x10 + α100x9 + α86x8 + α100x7+
+α106x6 + α104x5 + α130x4 + α218x3 + α206x2 + α140x + α78;

H: n − k = 17 x17 + α43x16 + α139x15 + α206x14 + α78x13 + α43x12+
+α239x11 + α123x10 + α206x9 + α214x8 + α147x7 + α24x6+

+α99x5 + α150x4 + α39x3 + α243x2 + α163x + α136;

α is the primitive element 2 under GF(28);

We chose M as ECC ID for ’Twas brillig so we expect deg r(x) = 9 in xn−km(x) = a(x)g(x) + r(x), where

a(x) = 64x15 + 214x14 + 88x13 + 145x12 + 17x11 + 169x10 + 127x9 + 62x8 + 105x7 + 248x6 + 96x5 +

35x4 + 97x3 + 244x2 + 151x + 18;

r(x) = 188x9 + 42x8 + 144x7 + 19x6 + 107x5 + 175x4 + 239x3 + 253x2 + 75x + 224.

Coefficients of r(x) are our error correction codewords.
So QR Code must include (in binary) message codewords with error correction codewords:
[64, 210, 117, 71, 118, 23, 50, 6, 39, 38, 150, 198, 198, 150, 112, 236, 188, 42, 144, 19, 107, 175, 239, 253, 75, 224].

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 6 / 1

Finite field arithmetic

Finite field arithmetic

GF(pn) is the finite field with pn element (p prime): the ring of integers modulo p;

elements of GF(pn) are represented as polynomials (degree < n) over GF(p);

operations are performed modulo R, an irreducible polynomial of degree n over GF(p);

if p = 2, the elements of GF(pn) are expressed as binary numbers.

Addition and Subtraction

Performed by adding or subtracting two of these polynomials together, and reducing the result modulo the
characteristic. Example in GF(2): (x3 + x + 1) + (x3 + x2) = x2 + x + 1, (6= 2x3 + x2 + x + 1).

Multiplication

Is multiplication modulo an irreducible reducing polynomial used to define the finite field. Example with irreducible
reducing polynomial R(x) = x8 + x4 + x3 + x + 1:
(x6 + x4 + x + 1)(x7 + x6 + x3 + x) = (x13 + x12 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + x2 + x) mod R(x) =
= (11111101111110 mod 100011011) = 1 (demostrated with long division with XOR).

Division (aka Multiplicative Inverse)

Is performed making a logarithm table of the finite field, and performing subtraction in the table. Subtraction of
logarithms is the same as division. Example: 8 : 4 = 2 is equal to log(α3)− log(α2) = 1 and α1 = 2 with 2
primitive element of GF(28).

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 7 / 1

Why Reed-Solomon?

Why Reed-Solomon?

Reed-Solomon are a good choice because:

are useful in correcting burst error (used in concatenated form): CD, DVD . . . ;

they are optimal k = n − d + 1 (Maximum Separable Distance);

but they require a large alphabet size (Singleton Bound).

If we operate on bits, how to convert the codewords over the large field in the binary alphabet?

Example: write every element of a code defined over F256 as an 8-bit vector.

Theory of Concatenated and Shortened Reed-Solomon Codes is applied in QR Code. But the
resulting code isn’t optimal: BCH is better!

Answer to the question: Why is still used Reed-Solomon instead of BCH?

The main reason that Reed-Solomon are still frequently used is that in many applications – and
in particular in storage device applications – errors often occur in bursts. Reed-Solomon codes
have the nice property that bursts of consecutive errors affect bits that correspond to a much
smaller number of elements in the field on which the Reed-Solomon code is defined.

Example: if a binary code constructed from the RS(256,230) code is hit with 30 consecutive
errors, these errors affect at most 5 elements in the field F256 and this error is easily corrected.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 8 / 1

Concatenated and Shortened Reed-Solomon codes

Concatenated and Shortened Reed-Solomon codes

Concatenated RS-codes (Forney, 1966)

Let A(n, k, d) the inner-code over Fq . Let Q = qk and define ψ : FQ → A a one-to-one
Fq-linear map. FQ is an extension field of Fq . Let B an (N,K ,D) outer-code over FQ . The
concatenation of A and B is the code C = {ψ(b1, b2, . . . , bN)|(b1, b2, . . . , bN) ∈ B} where
ψ(b1, b2, . . . , bN) = (ψ(b1), ψ(b2), . . . , ψ(bN)).

Theorem

Let A and B as above. Then C is a linear (nN, kK) code over Fq , (minimum distance ≥ d · D).

Example: In our case study we have A(8, 8, 1) and B(26, 16, 9∗) (*with misdecode protection
codewords). C is a linear (8 · 26, 8 · 16) = (208, 128) code over F2 (min. distance ≥ 1 · 9 = 9).

Shortened RS-codes

Reed-Solomon codes may be shortened by (conceptually) making a number of data symbols
zero at the encoder, not transmitting them, and then re-inserting them at the decoder.

Example: A (256,175) code can be shortened to (208,128). The encoder takes a block of 128
data bits, (conceptually) adds 48 zero bits, creates a (256,175) codeword and transmits only the
128 data bits and 80 parity bits.

NB: Each generator g(x) provided from the QR ISO standard divide x256 − 1.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 9 / 1

Choosing the Best Mask Layer

Choosing the Best Mask Layer

i,j start from 0;

% is the modulo operation, ÷ is the integer division;

000 001 010 011
(i + j)%2 = 0 i%2 = 0 j%2 = 0 (i + j)%3 = 0

100 101 110 111
((i ÷ 2) + (j ÷ 3))%2 = 0 (ij)%2 + (ij)%3 = 0 ((ij)%2 + (ij)%3)%2 = 0 ((i + j)%2 + (ij%3))%2

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 10 / 1

Penalty Method

Penalty Method
Each unmasked qrcode must be masked for a better recognition in the device scanner. Based on
a penalty method, we evaluate each masked qrcode we choose the mask layer with the lowest
penalty. An example to follow.

Penalty rule #1

If five or more of the same colored pixels are next to each other in a row or column. For the first
five consecutive pixels, the penalty score is increased by 3. Each consecutive pixel after that
adds 1 to the penalty.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 11 / 1

Penalty Method

Penalty rule #2

Each 2x2 block of the same color adds a penalty of 3 to the amount.

Penalty rule #3

Each pattern (in row or column) [1 0 1 1 1 0 1] with 4 white pixels on either or both sides adds a
penalty of 40 to the amount.

Penalty rule #4

This rule is based on the ratio of dark to light pixels: the closer the ratio is to 50% dark and
50% light, the better the penalty score will be.
Formula: 10 ∗ abs(fix(100 ∗ (#black pixels/#total pixels)− 50))/5

Penalty rule #2 Penalty rule #3 Penalty rule #4

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 12 / 1

Penalty results for our case study

Penalty results for our case study
Here we present the penalty method applied to our unmasked QR image:

mask 0: p1+p2+p3+p4 = 452 mask 4: p1+p2+p3+p4 = 436

mask 1: p1+p2+p3+p4 = 445 mask 5: p1+p2+p3+p4 = 511

mask 2: p1+p2+p3+p4 = 337 mask 6: p1+p2+p3+p4 = 408

mask 3: p1+p2+p3+p4 = 367 mask 7: p1+p2+p3+p4 = 549

So we choose mask layer ID 2 which pattern is 0 1 0.
D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 13 / 1

Encode Format Row and write the image

Encode Format Row and write the image
The penalty method is applied to every mask choosen in order to apply he best mask layer.
What about encoding information row? Choosing

g(x) = x10 + x8 + x5 + x4 + x2 + x + 1

as generator polynomial for BCH code (15,5), we have

ax14 + bx13 + cx12 + dx11 + ex10|g(x),

with a, b coefficients of the ECC ID choosen and c, d , e the mask layer ID choosen. The
remainder of this operation is what to include in the last 10 empty bits. So we can write the
encoded message in the image:

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 14 / 1

The Noisy Channel

The Noisy Channel
Now we have to create a mathematical model of a noisy transmission channel. A possible
mathematical model is Binary Symmetric Channel (BSC): if 0 or 1 is sent, the probability that
it is received without error is 1− p; if a 0 (respectively 1) is sent, the probability that a 1
(respectively 0) is received is p. So the probability that one bit is received without error is 1− p,
and then the probability that is received the wrong bit is p. In most practical situations p is very
small. A BSC has capacity

C(p) = 1+ p log2 p + (1− p) log2 (1− p).

The following illustration describes quite well the precedent model

In our case study we choose a probability p = 0.15 and then C(p) u 0.4.

Shannon Theorem

Given δ > 0 and R < C(p) exist a linear binary code C(n,k) with k/n ≥ R and
Perr = 1−

∑n
i=0 αipi (1− p)n−i < δ (with αi number of cosets of weigth i).

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 15 / 1

The Noisy Channel

For implement this mathematical model we use the MATLAB function bsc,

NDATA = bsc(DATA,P) passes the binary input signal DATA through a binary
symmetric channel with error probability P. If the input DATA is a Galois field
over GF(2), the Galois field data is passed through the binary symmetric
channel.
NDATA = bsc(DATA,P,S) causes RAND to use the random stream S. S is any valid
random stream.

where we have fixed the seem of the random number generator to compare repeated
experiments.

We choose to pass trough the BSC only the format pattern. The result is the following

In the left figure is highlighted the format pattern of the original QR code, in the right one is
highlighted the format pattern of the received QR code.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 16 / 1

The Noisy Channel

For the rest of the code, i.e. the message codewords and the error correcting codeword, the
effect of noise in the transmission channel is manifested by the occurrence of errors in
codewords. In our test study we suppose that the scanner of the code can’t read in the correct
way the first two codewords. The effect of the wrong lecture is that all the bits of the first two
codewords are zeros.

Observation

We consider this an error and not an erasure.

The result is the following

In the left figure there is the original QR code, in the right one the received QR code.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 17 / 1

BCH(15,5,7) for correcting information pattern

BCH(15,5,7) for correcting information pattern
The information pattern is a BCH(15,5,7) code. BCH code were discovered around 1960 by
Hocqueghem and independently by Bose and Ray-Chadhuri. For the description of this
algorithm we mainly refer to the section 5.1 of the book Fundamentals of Error Correcting
Codes wrote by C. Huffman and V. Pless.

BCH codes are cyclic codes designed to take advantage of the BCH bound, i.e.

Theorem (BCH Bound)

Let C be a cyclic code of length n over Fq with defining set T . Suppose C has minimum weight
d . Assume T contains δ − 1 consecutive elements for some integer δ. Then d ≥ δ.

For decoding this code we use the MATLAB function bchdec,

DECODED = bchdec(CODE,N,K) attempts to decode the received signal in CODE using
an (N,K) BCH decoder with the narrow-sense generator polynomial.
CODE is a Galois array of symbols over GF(2).
Each N-element row of CODE represents a corrupted systematic codeword, where the
parity symbols are at the end and the leftmost symbol is the most significant
symbol. bchdec uses the Berlekamp-Massey decoding algorithm.

In our case study we have N = 15 and K = 5.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 18 / 1

BCH(15,5,7) for correcting information pattern

The result is the following

where the top left figure represent the information pattern of original QR code, the top right the
information pattern of the QR code received and the bottom left the restored information
pattern.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 19 / 1

The PGZ Algorithm for correcting QR Symbol

The PGZ Algorithm for correcting QR Symbol

As we have seen in the previous slides, Reed-Solomon codes are a particular subfamily of BCH
codes. We choose to decoding them with the Peterson-Gorenstein-Zierler Algorithm. This
method was originally developed for binary codes by Peterson in 1960 and generalized shortly
thereafter by Gorenstein and Zierler to nonbinary BCH codes (our case study). For the
description of this algorithm we mainly refer to the section 5.4 of the book Fundamentals of
Error Correcting Codes wrote by C. Huffman and V. Pless.

Let C be a BCH code over Fq of length n and designed distance δ. As the minimum distance of
C is at least δ, C can correct at least t = b(δ − 1)/2c errors. The PGZ Decoding Algorithm will
correct up to t errors. Therefore the defining set T of C will be assumed to contain
{1, 2, . . . , δ − 1}, with α the primitive nth root of unity in the extension field Fqm of Fq , where
m = ordn(q).

Suppose that y(x) is received and that it differs from a codeword c(x) in at most t coordinates.
Therefore y(x) = c(x) + e(x) where c(x) ∈ C and e(x) is the error vector witch has weight
ν ≤ t. Suppose that the errors occur in the unknown coordinates k1, k2, . . . , kν . Therefore

e(x) = ek1x
k1 + ek2x

k2 + · · ·+ ekν x
kν . (1)

Once we determine e(x), which amounts to finding the error locations kj and the error
magnitudes ekj , we can decode the received vector as c(x) = y(x)− e(x).

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 20 / 1

The PGZ Algorithm for correcting QR Symbol

Recall that c(x) ∈ C if and only if c(αi) = 0 for all i ∈ T . In particular

y(αi) = c(αi) + e(αi) = e(αi) for all 1 ≤ i ≤ 2t,

since 2t ≤ δ − 1.

The PGZ decoding algorithm requires four steps.

First step

Compute the syndromes Si = y(αi) for 1 ≤ i ≤ 2t from the received vector (we are working
with the arithmetic of the finite field Fqm).

For this step is quite useful the following

Theorem

Siq = Sq
i for all i ≥ 1.

because it allows us to avoid a lot of evaluations of the received polynomial and then could help
us to reduce the computation costs of the algorithm.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 21 / 1

The PGZ Algorithm for correcting QR Symbol

Notice that from the equation (1) the syndromes satisfy

Si = y(αi) =
ν∑

j=1

ekj (α
i)kj =

ν∑
j=1

ekj (α
kj)i

for 1 ≤ i ≤ 2t. To simplify the notation, for 1 ≤ j ≤ ν, let Ej = ekj denote the error magnitude

at coordinate kj and Xj = αkj denote the error location number corresponding to the error
location kj . With this notation become

Si =
ν∑

j=1

EjX i
j , for 1 ≤ i ≤ 2t, (2)

which leads to the system of equations

S1 = E1X1 + E2X2 + · · ·+ EνXν

S2 = E1X 2
1 + E2X 2

2 + · · ·+ EνX 2
ν

...

S2t = E1X 2t
1 + E2X 2t

2 + · · ·+ EνX 2t
ν .

(3)

This system is obviously nonlinear in the Xj s with unknown coefficients Ej .

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 22 / 1

The PGZ Algorithm for correcting QR Symbol

The strategy is to transform the precedent into a linear system involving new variables
σ1, σ2, . . . , σν , that will lead directly to the error location numbers. Once these are known, we
return to the system (3), witch is then a linear system in the Ej s and solve for the error
magnitudes.
To this end, define the error locator polynomial to be

σ(x) = (1− xX1)(1− xX2) · · · (1− xXν) = 1+
ν∑

i=1

σix i .

The roots of σ(x) are the inverses of the error location numbers and thus

σ(X−1j) = 1+ σ1X−1j + σ2X−2j + · · ·+ σνX−νj = 0 for 1 ≤ j ≤ ν. (4)

Multiplying (4) by EjX i+ν
j produces

EjX i+ν
j + σ1EjX

i+ν−1
j + · · ·+ σνEjX i

j = 0 for any i .

Summing the result obtained over j for 1 ≤ j ≤ ν yields

ν∑
j=1

EjX i+ν
j + σ1

ν∑
j=1

EjX
i+ν−1
j + · · ·+ σν

ν∑
j=1

EjX i
j = 0

As long as 1 ≤ i and i + ν ≤ 2t, these summations are the syndromes obtained in (2). Because
ν ≤ t, the precedent equation becomes

σ1Si+ν−1 + σ2Si+ν−2 + · · ·+ σνSi = −Si+ν for 1 ≤ i ≤ ν.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 23 / 1

The PGZ Algorithm for correcting QR Symbol

Thus we can find the σk s if we solve the matrix equation
S1 S2 . . . Sν−1 Sν
S2 S3 . . . Sν Sν+1
...

...
...

...
Sν Sν+1 . . . S2ν−2 S2ν−1



σν
σν−1
...
σ1

 =


−Sν+1
−Sν+2

...
−S2ν .

 (5)

Lemma

Let µ ≤ t and let

Mµ =


S1 S2 . . . Sµ
S2 S3 . . . Sµ+1
...

...
...

Sµ Sµ+1 . . . S2µ−1

 .
Then Mµ is nonsingular if µ = ν and singular if µ > ν, where ν is the number of errors that
have occurred.

To execute the second step of our algorithm, we attempt to guess the number ν of errors. Call
our guess µ and starts with µ = t, witch is the largest that ν could be. The coefficients matrix
of the linear system (5) is Mµ = Mt .

Second step

In the order µ = t, µ = t − 1, . . . decide if Mµ is singular, stopping at the first value of µ where
Mµ is nonsingular. Set ν = µ and solve (5) to determine σ(x).

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 24 / 1

The PGZ Algorithm for correcting QR Symbol

Third step

Find the roots of σ(x) by computing σ(αi) for 0 ≤ i < n. Invert the roots to get the error
location number Xj .

Fourth step

Solve the first ν equations of (3) to obtain the error magnitudes Ej .

In fact we need to consider only the first ν equations in (3) because the coefficient matrix of the
first ν equations has determinant

det


X1 X2 . . . Xν
X 2
1 X 2

2 . . . X 2
ν

...
...

...
Xν1 Xν2 . . . Xνν

 = X1X2 · · ·Xν det


1 1 . . . 1
X1 X2 . . . Xν
...

...
...

Xν−11 Xν−12 . . . Xν−1ν


The latter is the transpose of a Vandermonde matrix and is well known that its determinant is
nonzero as the Xj s are distinct.

Observation

If the BCH code is binary, all error magnitudes must be 1. Hence step four can be skipped.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 25 / 1

The PGZ Algorithm for correcting QR Symbol

The result is the following

where the top left figure represent the original QR code, the top right the received QR code and
the bottom left the restored QR code.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 26 / 1

How can PGZ algorithm be improved?

How can PGZ algorithm be improved?
The title of this slide report a question that couldn’t be skipped.

The second step of the PGZ Algorithm is the most complicated and time consuming. In this
step in fact we have to solve the linear system (5), a problem that corresponds to the inversion
of the matrix Mµ.

This isn’t a problem when the error capability of the code is rather small, because, in these
cases, the matrix Mµ has small dimensions and the PGZ Algorithm is quite efficient. But when
the error capability of the code is very large and then the size of the matrices Mµ becomes very
large, the inversion of the matrix Mµ become an hard problem and step two becomes very time
consuming.

We can prevent this problem choosing one of the following algorithms

The Berlekamp-Massey Algorithm uses an iterative approach to compute the error
locator polynomial in a more efficient manner when t is large.

The Sugiyama Algorithm is another method that uses the Euclidean Algorithm to find
the error locator polynomial. This algorithm is quite comparable in efficiency with the
Berlekamp-Massey Algorithm.

Finally, also step three can be quite time consuming if the code is long, however little seems to
have been done to improve this step.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 27 / 1

Recovery hidden output message

Recovery hidden output message
Once we have corrected the corrupted image, we are ready to recovery the hidden message.

Select the format information row: [1 0 1 1 1 1 0 0 1 1 1 1 1 0 0];

Unmask the first 5 bits [1 0 1 1 1] with the standard rule: [1 0 1 1 1]− [1 0 1 0 1] = [0 0 0 1 0];
[0 0] is the ECC format recognized: M is the ECC;
[0 1 0] is the mask layer’s format recognized: 2 is its mask layer ID.

Then we can discover the hidden image:

Masked Image − Mask Layer = Unmasked Image

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 28 / 1

Recovery hidden output message

Once obtained the unmasked image is very simple to read the hidden message.

Check the 2× 2 block in the right-bottom corner of the image:

Unroll it: [0 1 0 0]. It tells us the message is in Binary format;

Check the 4× 2 block on top of previous block:

Unroll it: [0 0 0 0 1 1 0 1]. It tell us there are 13 codewords to read;

Remembering that 1 Byte is 8 Bit for M, read the next 13*8 bits:

or, in decimal: [39 84 119 97 115 32 98 114 105 108 108 105 103];

The previous sequence, converted in unicode, returns ’Twas brillig.

Our decoding process ends successfully.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 29 / 1

Extra Tests

Extra Tests

Some QR images generated from our MATLAB code:

www.univr.it Hello World id000000@univr.it

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 30 / 1

Bibliography

Bibliography

Fundamentals of Error Correcting Codes, C. Huffman, V. Pless, Cambridge U. Press;

Information technology, Automatic identification and data capture techniques, QR Code
2005 bar code symbology specification, INTERNATIONAL ISO/IEC STANDARD 18004

http://www.pclviewer.com/rs2/calculator.html

http://www.thonky.com/qr-code-tutorial/

Please take care to use error correction codewords from the last two website: the polynomial
division algorithm fails in some cases!

Thank you for your attention.

D. Boscaini, S. Parisotto (univr) 18 Ottobre 2012 31 / 1

	History
	Workflow
	Case study: 'Twas brillig
	Creating Error Codewords
	Finite field arithmetic
	Why Reed-Solomon?
	Concatenated and Shortened Reed-Solomon codes
	Choosing the Best Mask Layer
	Penalty Method
	Penalty results for our case study
	Encode Format Row and write the image
	The Noisy Channel
	BCH(15,5,7) for correcting information pattern
	The PGZ Algorithm for correcting QR Symbol
	How can PGZ algorithm be improved?
	Recovery hidden output message
	Extra Tests
	Bibliography

